Analiza matematyczna 1/Ćwiczenia 1: Zbiory liczbowe: Różnice pomiędzy wersjami
Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
m Zastępowanie tekstu - "<div class="thumb t(.*)"><div style="width:(.*);"> <flash>file=(.*)\.swf\|width=(.*)\|height=(.*)<\/flash> <div\.thumbcaption>(.*)<\/div> <\/div><\/div>" na "$4x$5px|thumb|$1|$6" |
|||
Linia 189: | Linia 189: | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie </span><div class="mw-collapsible-content" style="display:none"> | <div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie </span><div class="mw-collapsible-content" style="display:none"> | ||
[[File:am1c01.0010.svg|338x323px|thumb|right|Rysunek do ćwiczenia 1.6.(a)]] | |||
[[File:am1c01.0020.svg|338x323px|thumb|right|Rysunek do ćwiczenia 1.6.(b)]] | |||
[[File:am1c01.0030.svg|338x323px|thumb|right|Rysunek do ćwiczenia 1.6.(c)]] | |||
a) Niech <math> \displaystyle w=-64</math>. Wówczas <math> \displaystyle |w|=64</math>, zaś <math> \displaystyle \text{Arg} w=\pi</math>. Wobec tego na mocy wniosku z twierdzenia de Moivre'a równanie <math> \displaystyle z^6+64=0</math> spełnia sześć liczb o module <math> \displaystyle \sqrt[6]{64}=2</math> i argumentach głównych równych kolejno <math> \displaystyle \frac{\pi}{6}+k\frac{2\pi}{6}</math>. Liczby te są wierzchołkami sześciokąta foremnego wpisanego w okrąg o środku <math> \displaystyle 0</math> i promieniu <math> \displaystyle 2</math> i równe są | a) Niech <math> \displaystyle w=-64</math>. Wówczas <math> \displaystyle |w|=64</math>, zaś <math> \displaystyle \text{Arg} w=\pi</math>. Wobec tego na mocy wniosku z twierdzenia de Moivre'a równanie <math> \displaystyle z^6+64=0</math> spełnia sześć liczb o module <math> \displaystyle \sqrt[6]{64}=2</math> i argumentach głównych równych kolejno <math> \displaystyle \frac{\pi}{6}+k\frac{2\pi}{6}</math>. Liczby te są wierzchołkami sześciokąta foremnego wpisanego w okrąg o środku <math> \displaystyle 0</math> i promieniu <math> \displaystyle 2</math> i równe są |
Wersja z 11:09, 3 paź 2021
Zbiory liczbowe
Ćwiczenie 1.1.
Sprawdzić, czy liczby: , , , , należą do trójkowego zbioru Cantora.
Wskazówka
Rozwiązanie
Ćwiczenie 1.2.
Wykazać równości
a)
b)
Wskazówka
Rozwiązanie
Ćwiczenie 1.3.
a) Sprawdzić, że , dla dowolnych liczb całkowitych nieujemnych , takich, że .
b) Wykazać wzór dwumianowy Newtona
Wskazówka
Rozwiązanie
Ćwiczenie 1.4.
Za pomocą zasady indukcji matematycznej wykazać, że dla zachodzą równości
a)
b)
Przypomnijmy, że równości te wyprowadziliśmy w ramach wykładu, korzystając ze wzoru de Moivre'a.
Wskazówka
Rozwiązanie
Ćwiczenie 1.5.
Uprościć wyrażenia
a)
b)
c)
Wskazówka
Rozwiązanie
Ćwiczenie 1.6.
Rozwiązać w zbiorze liczb zespolonych równania
a)
b)
c)
Wskazówka
Rozwiązanie