Wstęp do programowania/Rekursja/Ćwiczenia: Różnice pomiędzy wersjami
Linia 451: | Linia 451: | ||
3 = 1+1+1 | 3 = 1+1+1 | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Wskazówka 1</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
Użyj dodatkowej tablicy do przechowywania początków rozkładów. Uważaj, aby nie kopiować tej tablicy przy każdym wywołaniu rekurencyjnym! | Użyj dodatkowej tablicy do przechowywania początków rozkładów. Uważaj, aby nie kopiować tej tablicy przy każdym wywołaniu rekurencyjnym! | ||
</div> | </div> | ||
</div> | </div> | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Wskazówka 2</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
Funkcja rekurencyjna powinna mieć parametr wskazujący jak duże składniki mogą być użyte do rozkładu pozostałej liczby. </div> | Funkcja rekurencyjna powinna mieć parametr wskazujący jak duże składniki mogą być użyte do rozkładu pozostałej liczby. </div> | ||
</div> | </div> | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie 1</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
'''procedure''' Suma(n:integer); | '''procedure''' Suma(n:integer); | ||
// 1 <= n | // 1 <= n | ||
Linia 510: | Linia 516: | ||
Poza wspomnianymi modyfikacjami całą procedurę 'rozkład' można by napisać w sposób ''rosnący'', tzn. zamiast generować coraz mniejsze składniki - generować coraz większe, aż osiągniemy bądź przekroczymy n. W takim wypadku składniki należałoby wypisywać w odwrotnej kolejności. | Poza wspomnianymi modyfikacjami całą procedurę 'rozkład' można by napisać w sposób ''rosnący'', tzn. zamiast generować coraz mniejsze składniki - generować coraz większe, aż osiągniemy bądź przekroczymy n. W takim wypadku składniki należałoby wypisywać w odwrotnej kolejności. | ||
</div> | </div> | ||
</div> | </div> | ||
<!-- to zadanie tu nie pasuje, wymaga zdecydowanie rekordow z wariantami... | <!-- to zadanie tu nie pasuje, wymaga zdecydowanie rekordow z wariantami... |
Aktualna wersja na dzień 16:23, 28 maj 2020
To są zadania na rekursję.
Oglądaj wskazówki i rozwiązania __SHOWALL__
Ukryj wskazówki i rozwiązania __HIDEALL__
Zadanie 1 (Labirynt)
Czy istnieje ścieżka miedzy wskazanymi punktami (i1,j1) i (i2,j2) w labiryncie reprezentowanym przez prostokątną tablicę liczb całkowitych o rozmiarze M×N, zawierającą zera (ściana) i jedynki (droga)? Zakładamy, że nie można przechodzić z pola na pole po skosie (np. z (2,5) na (3,6)), a tylko w czterech podstawowych kierunkach (np. z (2,5) na (3,5), (2,4) itd.)
Wskazówka 1
Rozwiązanie 1
Ćwiczenie 1
Ćwiczenie 2
Ćwiczenie 3
Odpowiedź
Dla ciekawskich:
Zadanie 2 (Z górki na pazurki)
W tablicy liczb całkowitych o rozmiarze M×N zapisana jest mapa gór (każdy punkt ma podaną dodatnią wysokość). Sprawdź, czy da się przejść z punktu startowego (i1,j1) do docelowego (i2,j2) idąc:
- tylko w dół lub po płaskim
- tylko w dół
Tak jak w poprzednim zadaniu poruszać się można tylko w czterech kierunkach podstawowych, nie po przekątnej.
Wskazówka 1
Rozwiązanie 1
Rozwiązanie 2
Zadanie 3 (Wieże Hanoi z ograniczeniami)
Na wykładzie omawiane były wieże Hanoi. Ciekawa modyfikacja tego zadania polega na zabronieniu ruchów pomiędzy niektórymi pałeczkami, np. z pierwszej na drugą. Zapisać procedurę realizującą to zadanie przy zabronionych niektórych ruchach.
Wskazówka 1
Rozwiązanie 1
Ćwiczenie 1
Odpowiedź
Zadanie 4 (Ustawianie hetmanów)
Napisz procedurę znajdująca wszystkie takie rozstawienia 8 hetmanów na szachownicy, by żadne dwa hetmany się nie atakowały.
Wskazówka 1
Rozwiązanie 1
Zadanie 5 (Mnożenie wielomianów)
Dane są dwie tablice (array[0..N-1] of real) reprezentujące dwa wielomiany stopnia N-1. Należy obliczyć iloczyn tych wielomianów metodą dziel-i-zwyciężaj. Zakładamy, że N jest potęgą dwójki.
Wskazówka 1
Zadanie 6 (Suma składników)
Napisz procedurę, która wypisze dla zadanej liczby n jej wszystkie rozkłady na sumy liczb naturalnych większych od zera ustawionych w kolejności nierosnącej. Np. dla n = 3:
3 = 3
3 = 2+1
3 = 1+1+1
Wskazówka 1
Wskazówka 2
Rozwiązanie 1