GKIW Moduł 10 - Dążenie do realizmu: Różnice pomiędzy wersjami
Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Linia 303: | Linia 303: | ||
{| border="0" cellpadding="4" width="100%" | {| border="0" cellpadding="4" width="100%" | ||
|width="500px" valign="top"|[[Grafika: | |width="500px" valign="top"|[[Grafika:GKIW_M10v4_plus_09.png|thumb|500px]] | ||
|valign="top"|Animacja oparta na klatkach kluczowych składa się z następujących etapów: | |valign="top"|Animacja oparta na klatkach kluczowych składa się z następujących etapów: | ||
Linia 322: | Linia 322: | ||
Przechwytywanie ruchu pozwala powielić schemat zachowania obiektu na podstawie naturalnego zachowania się obiektu rzeczywistego. Jest wygodna do modelowania ruchu postaci ludzkich, zwierzęcych a także postaci fantastycznych, którym można przypisać pewne właściwości ruchowe podobne do znanych cech zwierząt lub ludzi. Metoda ta daje bardzo dobre efekty, gdyż łatwiej jest skopiować ruch zwierząt niż opisać go równaniami matematycznymi. Wadą jest konieczność stosowania specjalistycznego sprzętu do przechwytywania ruchu. Stosuje się zestawy czujników położenia, skanery trójwymiarowe lub zdjęcia poklatkowe. | Przechwytywanie ruchu pozwala powielić schemat zachowania obiektu na podstawie naturalnego zachowania się obiektu rzeczywistego. Jest wygodna do modelowania ruchu postaci ludzkich, zwierzęcych a także postaci fantastycznych, którym można przypisać pewne właściwości ruchowe podobne do znanych cech zwierząt lub ludzi. Metoda ta daje bardzo dobre efekty, gdyż łatwiej jest skopiować ruch zwierząt niż opisać go równaniami matematycznymi. Wadą jest konieczność stosowania specjalistycznego sprzętu do przechwytywania ruchu. Stosuje się zestawy czujników położenia, skanery trójwymiarowe lub zdjęcia poklatkowe. | ||
|} | |||
---- | |||
{| border="0" cellpadding="4" width="100%" | |||
|width="500px" valign="top"|[[Grafika:GKIW_M10v4_plus_10.png|thumb|500px]][[Grafika:animA1v2.gif |'''Dziwne przygody Koziołka Matołka (1869-1971)'''|thumb|300px]] | |||
|valign="top"|Animacja poklatkowa jest najczęściej stosowaną metodą w tradycyjnych filmach rysunkowych. | |||
Pokazany przykład animacji Koziołka Matołka obejmuje 14 klatek pełnego cyklu ruchu. Bardzo często dla uproszczenia wykonywano mniej klatek (na przykład 7) obejmujących ten sam cykl ruchu i aby zachować odpowiedni czas trwania akcji każdą klatkę powielano dwukrotnie. Czasami mogło to prowadzić do pewnego, nienaturalnego „szarpania” ruchu, jednak przy wartkiej (zazwyczaj) akcji całego filmu było to praktycznie niezauważalne. | |||
Warto zwrócić jeszcze uwagę na złożoność całego ujęcia. Ruch postaci musi być skorelowany z przesuwaniem się tła. W ten sposób widz będzie miał na przykład wrażenie, że Koziołek rzeczywiście biegnie przez miasto. Ale z drugiej strony fazy ruchu postaci i fazy ruchu tła (w tym przypadku domków miasta) są całkowicie niezależne – w prezentowanym przykładzie nie ma ciągłości ruch tła. Wynika stąd możliwość niezależnego generowania obrazu postaci i tła. W tradycyjnej animacji realizowane to było na kolejnych warstwach przezroczystego celuloidu. Najwygodniej jest operować niezależnie każdą postacią oraz często niezależnie różnymi fragmentami dekoracji. Taki zestaw (gruby) celuloidu dopiero w ostatniej fazie produkcji był kopiowany na taśmę filmową. W animacji komputerowej mamy do dyspozycji warstwy rysunku, każda animowana i edytowana niezależnie. Daje to bardzo duże możliwości manipulacji obrazem. | |||
Warto przypomnieć, że pomysły „rozwarstwienia” obrazu w technice filmowej pochodzą z początku XX wieku. W 1916 roku Frank Williams zaproponował metodę wędrującej maski (travelling matte), która została w latach 50 przekształcona w jedną z najważniejszych wykorzystywanych dzisiaj technik, występującą pod nazwą kluczowania (CSO – color separation overlay, także występuje jako chroma key, blue screen, lub czasami jako blue-box). Polega ona na filmowaniu aktora na tle jednolitej planszy (np. niebieskiej), a następnie zmontowaniu filmu wstawiając dowolne tło w miejsce barwy planszy. W czasach Williamsa wymagało to powtórnego filmowania, ewentualnie filmowania z wykorzystaniem tylnej projekcji. Dzisiaj wykonuje się to odpowiednim mikserem elektronicznym (kluczowaniem) lub programami komputerowymi na etapie postprodukcji. Dodatkowo współcześnie najczęściej realizuje się takie zadanie techniką grey-screen – tło ma kolor szary i dobre właściwości odbijające. Dzięki temu za pomocą odpowiedniego oświetlenia można uzyskać prawie dowolny kolor tła w zależności od potrzeb. Autorzy pełnej komputeryzacji tej techniki w 1995 roku otrzymali Oscara. | |||
Dodatkowo warto zwrócić uwagę na sposób rysowania określonych elementów poszczególnych klatek. Rysunki domków tła, w pokazanym przykładzie, są rozmazane w przeciwieństwie do postaci pierwszoplanowej (Koziołka Matołka) rysowanej wyraźną, ostrą kreską. Potęguje to wrażenie ruchu i jednocześnie daje namiastkę głębi ostrości obejmującej tylko pierwszoplanowego bohatera. | |||
Niezależnie od produkcji filmów animowanych, metoda animacji poklatkowej jest dzisiaj dość powszechnie stosowana w postaci prostych animacji wykorzystywanych w prezentacjach lub na stronach internetowych. Realizowane to jest na przykład w postaci animowanych gifów. Oczywiście wymaga to wygenerowania zestawu rysunków obejmujących pełny cykl ruchu i połączeniu ich w jedną animację. | |||
|} | |||
---- | |||
{| border="0" cellpadding="4" width="100%" | |||
|width="500px" valign="top"|[[Grafika:GKIW_M10v4_plus_11.png|thumb|500px]] | |||
|valign="top"|Klatka kluczowa (keyframe) jest związana z charakterystycznym punktem scenariusza, momentem ruchu lub fazą ujęcia. Klatki kluczowe wyznaczają etapy rozwoju akcji filmu, ale także mogą charakteryzować postaci (na przykład przez mimikę twarzy). Klatki kluczowe zawsze planował i rysował główny animator („keyframer”). Natomiast klatki pośrednie traktowane były jako wypełnienie luk między klatkami kluczowymi – stąd animatorzy rysujący klatki pośrednie nazywani byli „inbetweenerami”. Ich zajęcie, chociaż niezbędne dla całego procesu powstania filmu, traktowane było zawsze jako prostsze i mniej ambitne. Dzisiaj zadanie generowania klatek pośrednich realizuje zazwyczaj komputer. | |||
Warto zwrócić uwagę na problem czasu, a właściwie jego kontroli, w powstawaniu filmu animowanego. Film o określonym czasie trwania przekłada się na określoną liczbę klatek, a to z kolei limituje możliwości rysowania określonych faz ruchu, aby sprawiał on wrażenie ciągłego. Zadanie planowania klatek kluczowych jest ściśle związane z rozwojem akcji i związanym z nią upływem czasu. Jest to jednym z najtrudniejszych zadań głównego animatora. Problem komplikuje fakt, że poszczególne etapy akcji, poszczególne fazy ruchu najczęściej nie dają się opisać prostymi zależnościami liniowymi. Rzeczą, która jest zawsze stała w filmie animowanym jest odstęp czasu pomiędzy poszczególnymi klatkami natomiast zawartość klatek musi być dopasowana do upływu czasu. W najprostszym przykładzie animacji odbijającej się piłeczki, jej położenia w określonych momentach określają prawa fizyki. Nieuwzględnienie ich spowoduje nienaturalny ruch, co na pewno zostanie zauważone przez odbiorcę. Aby rozwiązać tego typu problemy, w metodzie klatek kluczowych wykorzystuje się tzw. krzywe (ścieżki lub linie) ruchu. Określają one położenie obiektu w danym momencie. Współczesne programy animacyjne wspomagają realizację klatkami kluczowymi pozwalając na dowolne, nieliniowe manipulowanie krzywą ruchu, a tym samym położeniem obiektu w określonym momencie. | |||
Prezentowany rysunek pokazuje odbicie zakładając, że piłeczka nie odkształca się przy kontakcie z przedmiotem, od którego się odbija. Uwzględnienie tego typu parametrów znacznie poprawiłoby odbiór animacji. | |||
|} | |||
---- | |||
{| border="0" cellpadding="4" width="100%" | |||
|width="500px" valign="top"|[[Grafika:GKIW_M10v4_plus_12.png|thumb|500px]] | |||
|valign="top"|Animacja proceduralna pozwala opisać zależnościami funkcyjnymi zmiany położeń lub kształtów. Stosuje się kinematykę (prostą i odwrotną) lub metodę deformacji swobodnych. | |||
Ruch złożonych mechanizmów lub postaci wymaga opisania zależności między poszczególnymi segmentami obiektu – powiązania „stawami” segmentów. Na przykład animacja ręki wymaga połączenia ruchów ramienia, przedramienia, dłoni i palców. Połączenie segmentów tworzy łańcuch kinematyczny o skończonej liczbie ogniw. Jest to łączenie hierarchiczne tzn. dla każdego segmentu można wyróżnić segment nadrzędny i podrzędny w łańcuchu. Warto przy tym zwrócić uwagę na sposób wydzielenia segmentów. W przypadku postaci ludzkich czy zwierzęcych znana jest ich budowa anatomiczna i na tej podstawie budowany jest łańcuch kinematyczny. Podobnie dla obiektów mechanicznych o znanej konstrukcji. Natomiast dla postaci fantastycznych lub innych nieznanych obiektów trzeba przeprowadzić modelowanie szkieletu – wydzielenie segmentów i opracowanie zależności mechanicznych pomiędzy nimi. Dla każdego połączenia (stawu) trzeba zdefiniować stopnie swobody segmentów. Stopnie swobody określają liczbę prostych ruchów możliwych do wykonania. Na przykład ciało swobodne ma 6 stopni swobody w układzie kartezjańskim (trzy translacje i trzy obroty). | |||
Kinematyka prosta (forward kinematic) opisuje zależności w łańcuchu kinematycznym od segmentu nadrzędnego do podrzędnego. | |||
Kinematyka odwrotna (inverse kinematic) opisuje zależności w łańcuchu kinematycznym od segmentu podrzędnego do nadrzędnego. W tym przypadku można rozpocząć analizę od docelowego położenia ostatniego (najbardziej podrzędnego w hierarchii) segmentu i na tej podstawie wyznaczyć położenie segmentów pozostałych – np. szukamy położenia ramienia i przedramienia, aby zapewnić położenie dłoni i palców w określonym punkcie. | |||
|} | |||
---- | |||
{| border="0" cellpadding="4" width="100%" | |||
|width="500px" valign="top"|[[Grafika:GKIW_M10v4_plus_13.png|thumb|500px]] | |||
|valign="top"|Trudności w wiarygodnym pokazaniu ruchu postaci są znane twórcom filmowym od początku historii filmu animowanego. O wiele łatwiej zaakceptować widzowi umowność rysunku lub brak szczegółów niż, na przykład, nienaturalne poruszanie ręką – poruszanie niezgodne z naszym wyobrażeniem. Naturalnym pomysłem rozwiązania tego problemu było wzorowanie ruchów animowanych postaci na rzeczywistych ruchach ludzi. W tym celu zatrudniano modeli zastygających w pozach (często niewygodnych) odpowiadających klatkom kluczowym. Jeśli nie było to możliwe, animatorzy musieli wykonać perfekcyjne rysunki na podstawie wyobrażenia postaci. Pierwszą metodą ułatwiającą to zadanie była rotoskopia. Polega ona na filmowaniu aktora wykonującego sekwencję ruchu, a następnie wykonywaniu rysunków na podstawie zdjęć poklatkowych takiego filmu. Pierwszym znanym filmem, w którym wykorzystano rotoskopię była Królewna Śnieżka Walta Disneya. Metoda ta jest również stosowana współcześnie. | |||
W latach osiemdziesiątych XX wieku na Simon Fraser University podjęto badania nad automatycznym przechwytywaniem ruchów postaci (motion capture). W celach komercyjnych metodę tę zastosowano po raz pierwszy w technice filmowej w 1984 roku. Była to 30 sekundowa reklamówka – „Sexy robot” (“Brilliance”) - firmy National Canned Food Information Council. Do produktów firmy, głosem Kathleen Turner, zachęcał animowany robot. Aby zachować naturalność ruchów postaci, Robert Abel opracował optyczny system przechwytywania ruchu na podstawie położenia markerów umieszczonych na ciele aktora. Niepowodzenia w 1990 roku przy realizacji filmu „Pamięć absolutna” (Total Recall) z Arnoldem Schwarzeneggerem zahamowały rozwój systemów przechwytywania ruchu. Do problemu powrócono w 1997 roku podczas produkcji „Titanica”. Od tego czasu większość filmów wymagających efektów specjalnych, a także gier komputerowych, jest realizowana z wykorzystaniem techniki przechwytywania ruchu (motion capture). | |||
|} | |||
---- | |||
{| border="0" cellpadding="4" width="100%" | |||
|width="500px" valign="top"|[[Grafika:GKIW_M10v4_plus_14.png|thumb|500px]] | |||
|valign="top"|Najprostszym rozwiązaniem jest system elektromechaniczny. Aktor zakłada strój (egzoszkielet) w formie sztywnego stelażu. Egzoszkielet zawiera zestaw czujników, pozwalających monitorować wzajemne położenia między jego elementami. Jest to, oczywiście, tak skonstruowane, aby w jak najmniejszym stopniu ograniczać ruchy aktora. Analiza wzajemnych położeń między elementami egzoszkieletu pozwala, w czasie rzeczywistym, określać i rejestrować położenie ciała aktora. System elektromechaniczny jest najmniej dokładny spośród znanych rozwiązań przechwytywania ruchu. Wadą tego systemu jest także konieczność używania niewygodnego egzoszkieletu. Jest to jednak rozwiązanie praktycznie najtańsze, co jest jego podstawową zaletą. Dodatkowo jest to rozwiązanie niewymagające rozstawiania zestawu czujników zewnętrznych, tak jak w systemach optycznych. | |||
System elektromagnetyczny (magnetyczny) wykorzystuje rejestrację zmian strumienia magnetycznego wywołaną zmianą wzajemnego położenia czujników (nadajników i odbiorników). Aktor zakłada strój z zestawem czujników połączonych kablem (najczęściej) z komputerem. System zawiera zwykle stosunkowo małą liczbę czujników (kilkanaście). Dokładność pomiaru położenia jest lepsza niż systemów mechanicznych, ale gorsza niż optycznych. Analiza położenia jest jednak szybsza niż systemów optycznych. Do podstawowych wad systemu elektromagnetycznego należy zaliczyć wrażliwość na zakłócenia zewnętrzne – na zewnętrzne pole magnetyczne. | |||
Systemy optyczne oparte są na analizie położenia punktu (markera) na podstawie kilku niezależnych rzutów tego punktu. Na stroju aktora jest umieszczony zestaw od kilkunastu do kilkudziesięciu markerów. Kamery rozmieszczone wokół sceny rejestrują obraz aktora i markerów. W zależności od liczby aktorów na scenie stosuje się od kilku do kilkudziesięciu kamer. Kamery muszą objąć całą przestrzeń sceny i dawać możliwość rejestracji markerów także przy wzajemnym zasłanianiu się aktorów. Na podstawie rzutów markera komputer wyznacza jego położenie w przestrzeni. System optyczny jest najdroższym ze znanych rozwiązań przechwytywania ruchu. Daje jednak możliwość najbardziej dokładnego pomiaru położenia (rzędu ułamków milimetra). Strój z markerami optycznymi jest najmniej kłopotliwym rozwiązaniem dla aktora spośród wszystkich systemów przechwytywania ruchu. | |||
Wyróżnia się systemy optyczne pasywne i aktywne. W systemach pasywnych markery odbijają światło we wszystkich kierunkach – a przede wszystkim w kierunku źródła (odbicie powrotne – retroreflection). Markery są punktami pokrytymi farbą lub tworzywem o odpowiednich właściwościach odbijających. W pierwszych systemach optycznych stosowano piłeczki pingpongowe. W systemach aktywnych markery emitują światło. Najczęściej stosuje się diody elektroluminescencyjne emitujące promieniowanie podczerwone. Aby ułatwić analizę przy dużej liczbie czujników, często każdy z nich emituje impulsy (błyski) z inną częstotliwością. | |||
|} | |||
---- | |||
{| border="0" cellpadding="4" width="100%" | |||
|width="500px" valign="top"|[[Grafika:GKIW_M10v4_plus_15.png|thumb|500px]] | |||
|valign="top"|Rozpatrzmy dwie kamery K1 i K2 śledzące poruszający się punkt P zgodnie z rysunkiem. Jeśli znane jest położenie kamer oraz ich ustawienie, to można określić rzuty <math>P'</math> i <math>P''</math> . Rzuty te definiują proste, których przecięciem jest szukany punkt P. Stąd jego współrzędne można wyznaczyć korzystając z prezentowanych równań. W praktyce, na skutek zakłóceń i błędów pomiarów może się okazać, że proste zdefiniowane przez rzuty <math>P'</math> i <math>P''</math> wcale się nie przecinają. W takiej sytuacji należy wyznaczyć punkt P będący punktem najbliższym obu prostych. | |||
Do określenia położenia punktu wystarczą dwie kamery. Jednak aktor poruszając się może zasłaniać markery umieszczone na ubraniu. Na scenie może być także wielu aktorów, którzy zasłaniają się wzajemnie. Z tego powodu stosuje się wiele kamer, aby bez względu na pozę aktora, każdy marker był zawsze „widziany” przynajmniej przez dwie kamery. | |||
|} | |||
---- | |||
{| border="0" cellpadding="4" width="100%" | |||
|width="500px" valign="top"|[[Grafika:GKIW_M10v4_plus_16.png|thumb|500px]] | |||
|valign="top"|Duża szybkość pracy systemów przechwytywania ruchu (optycznych lub magnetycznych) pozwala wygenerować wirtualne postacie w czasie rzeczywistym. Prezentowane zdjęcia pokazują system optyczny aktywny, którego jednym z elementów jest stojący na scenie ekran. Dzięki niemu aktor może na bieżąco śledzić ruchy wirtualnej postaci. | |||
Mimo niezaprzeczalnych zalet stosowania systemów przechwytywania ruchu w kreowaniu realistycznie poruszających się wirtualnych postaci trzeba wspomnieć o ich wadach. | |||
*Występuje konieczność stosowania bardzo specjalistycznego sprzętu i oprogramowania. | |||
*Związane jest to z wysokimi kosztami (co najmniej kilkadziesiąt tysięcy dolarów). | |||
*Koszty te mogą utrudniać powstawanie małych, niskobudżetowych produkcji. | |||
*Powstają problemy skalowania postaci – wymiary wirtualnych postaci, szczególnie fantastycznych, nie zawsze odpowiadają budowie ciała aktorów, wymaga to dodatkowego przetwarzania ścieżek ruchu, | |||
*Podobny problem występuje w przypadku scenariusza przewidującego ruchy niezgodne z wyobrażeniami lub niezgodne z fizyką – co często występuje w filmach animowanych. | |||
|} | |} | ||
---- | ---- |
Wersja z 12:07, 30 paź 2007
Wykład nowy
![]() |
![]() |
Literatura
![]() |
![]() |
Wykład
![]() |
![]() |