GKIW Moduł 8 - Modelowanie oświetlenia: Różnice pomiędzy wersjami
Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Nie podano opisu zmian |
|||
Linia 9: | Linia 9: | ||
{| border="0" cellpadding="4" width="100%" | {| border="0" cellpadding="4" width="100%" | ||
|width="500px" valign="top"|[[Grafika: | |width="500px" valign="top"|[[Grafika:GKIW_M8_Slajd_01.png|thumb|500px]] | ||
|valign="top"| | |valign="top"| | ||
|} | |} | ||
Linia 15: | Linia 15: | ||
{| border="0" cellpadding="4" width="100%" | {| border="0" cellpadding="4" width="100%" | ||
|width="500px" valign="top"|[[Grafika: | |width="500px" valign="top"|[[Grafika:GKIW_M8_Slajd_02.png|thumb|500px]] | ||
|valign="top"|Kolejnym problemem wymagającym rozwiązania, jeśli chcemy osiągnąć realizm rysunku, jest '''problem oświetlenia'''. Każda powierzchnia reaguje w jej właściwy sposób na padające na nią światło. Barwy, faktury i inne właściwości przedmiotów postrzegamy dzięki temu, że przedmioty te są oświetlone (lub same emitują światło). Symulacja tych zjawisk pozwala oddać realny wygląd elementów wirtualnej sceny. | |valign="top"|Kolejnym problemem wymagającym rozwiązania, jeśli chcemy osiągnąć realizm rysunku, jest '''problem oświetlenia'''. Każda powierzchnia reaguje w jej właściwy sposób na padające na nią światło. Barwy, faktury i inne właściwości przedmiotów postrzegamy dzięki temu, że przedmioty te są oświetlone (lub same emitują światło). Symulacja tych zjawisk pozwala oddać realny wygląd elementów wirtualnej sceny. | ||
Można wyróżnić dwa niezależne przypadki: '''odbicie światła i przenikanie światła''' (dla materiałów przezroczystych). Oczywiście może zachodzić jeszcze pochłanianie, ale z punktu widzenia obserwatora jest to najmniej interesujący przypadek. Dla przypadku odbicia mówimy o '''odbiciu kierunkowym (lustrzanym)''' lub '''rozproszonym (dyfuzyjnym)'''. W pierwszym przypadku padający promień odbija się pod kątem równym kątowi padania. W drugim przypadku odbicie może być widoczne pod dowolnym kątem. Analogiczna sytuacja może zajść dla przenikania światła. | Można wyróżnić dwa niezależne przypadki: '''odbicie światła i przenikanie światła''' (dla materiałów przezroczystych). Oczywiście może zachodzić jeszcze pochłanianie, ale z punktu widzenia obserwatora jest to najmniej interesujący przypadek. Dla przypadku odbicia mówimy o '''odbiciu kierunkowym (lustrzanym)''' lub '''rozproszonym (dyfuzyjnym)'''. W pierwszym przypadku padający promień odbija się pod kątem równym kątowi padania. W drugim przypadku odbicie może być widoczne pod dowolnym kątem. Analogiczna sytuacja może zajść dla przenikania światła. | ||
Linia 23: | Linia 23: | ||
{| border="0" cellpadding="4" width="100%" | {| border="0" cellpadding="4" width="100%" | ||
|width="500px" valign="top"|[[Grafika: | |width="500px" valign="top"|[[Grafika:GKIW_M8_Slajd_03.png|thumb|500px]] | ||
|valign="top"|Odbicie rzeczywiste od powierzchni materiału jest zjawiskiem złożonym. Nawet dla najlepszych zwierciadeł promień odbity jest widoczny w pewnym niewielkim (niezerowym) kącie wokół kierunku odbicia idealnego (teoretycznego). W najprostszym przypadku wyróżnia się odbicie kierunkowe i rozproszone. Dla rzeczywistych powierzchni zawsze zachodzą oba przypadki i jednocześnie odbicie kierunkowe nie występuje w postaci idealnej. Dodatkowo może występować składowa odbicia powrotnego (współdrożnego) w kierunku, z jakiego padało światło. Można więc przyjąć rzeczywiste odbicie jako wypadkową 4 składowych (rysunek): rozproszonej, kierunkowej idealnej, kierunkowej rzeczywistej (ang. glossy – odbicia połysku), powrotnej. Analogiczne przypadki można wyróżnić rozpatrując załamanie promieni. | |valign="top"|Odbicie rzeczywiste od powierzchni materiału jest zjawiskiem złożonym. Nawet dla najlepszych zwierciadeł promień odbity jest widoczny w pewnym niewielkim (niezerowym) kącie wokół kierunku odbicia idealnego (teoretycznego). W najprostszym przypadku wyróżnia się odbicie kierunkowe i rozproszone. Dla rzeczywistych powierzchni zawsze zachodzą oba przypadki i jednocześnie odbicie kierunkowe nie występuje w postaci idealnej. Dodatkowo może występować składowa odbicia powrotnego (współdrożnego) w kierunku, z jakiego padało światło. Można więc przyjąć rzeczywiste odbicie jako wypadkową 4 składowych (rysunek): rozproszonej, kierunkowej idealnej, kierunkowej rzeczywistej (ang. glossy – odbicia połysku), powrotnej. Analogiczne przypadki można wyróżnić rozpatrując załamanie promieni. | ||
Linia 30: | Linia 30: | ||
{| border="0" cellpadding="4" width="100%" | {| border="0" cellpadding="4" width="100%" | ||
|width="500px" valign="top"|[[Grafika: | |width="500px" valign="top"|[[Grafika:GKIW_M8_Slajd_04.png|thumb|500px]] | ||
|valign="top"| | |valign="top"| | ||
|} | |} | ||
Linia 36: | Linia 36: | ||
{| border="0" cellpadding="4" width="100%" | {| border="0" cellpadding="4" width="100%" | ||
|width="500px" valign="top"|[[Grafika: | |width="500px" valign="top"|[[Grafika:GKIW_M8_Slajd_05.png|thumb|500px]] | ||
|valign="top"|Anizotropia jest zjawiskiem polegającym na zależności właściwości fizycznych od charakterystycznych kierunków materiału. Pojęcie anizotropii optycznej jest najczęściej kojarzone z przechodzeniem światła przez kryształy i zjawiskiem dwójłomności. Spowodowane to jest zależnością współczynnika załamania światła od kierunku rozchodzenia się fali względem głównego przekroju kryształu. Wyróżnia się anizotropię naturalną (wykazuje ją większość kryształów) i anizotropię wymuszoną, spowodowaną takimi czynnikami zewnętrznymi jak działanie pól elektrycznych (zjawisko Kerra) i magnetycznych (zjawisko Cottona-Moutona) lub odkształcenia mechaniczne (ściskanie lub rozciąganie w zadanym kierunku). Z anizotropią mamy także do czynienia w przypadku odbicia promieniowania od powierzchni materiału. Wiele powierzchni, zarówno naturalnych, jak i uzyskanych w wyniku technologicznej obróbki odbija światło w sposób anizotropowy, zależny od kierunku jego padania – w sposób zależny od usytuowania powierzchni względem źródła światła. Dobrym przykładem powierzchni wykazującej naturalne właściwości anizotropowe jest powierzchnia drewna. Odbija ona światło zależnie od kata między kierunkiem padania a kierunkiem słojów przekroju. Powierzchnia metalu poddana obróbce mechanicznej (np. polerowaniu) będzie odbijała światło zależnie od kąta między padającym promieniem, a kierunkiem obróbki. | |valign="top"|Anizotropia jest zjawiskiem polegającym na zależności właściwości fizycznych od charakterystycznych kierunków materiału. Pojęcie anizotropii optycznej jest najczęściej kojarzone z przechodzeniem światła przez kryształy i zjawiskiem dwójłomności. Spowodowane to jest zależnością współczynnika załamania światła od kierunku rozchodzenia się fali względem głównego przekroju kryształu. Wyróżnia się anizotropię naturalną (wykazuje ją większość kryształów) i anizotropię wymuszoną, spowodowaną takimi czynnikami zewnętrznymi jak działanie pól elektrycznych (zjawisko Kerra) i magnetycznych (zjawisko Cottona-Moutona) lub odkształcenia mechaniczne (ściskanie lub rozciąganie w zadanym kierunku). Z anizotropią mamy także do czynienia w przypadku odbicia promieniowania od powierzchni materiału. Wiele powierzchni, zarówno naturalnych, jak i uzyskanych w wyniku technologicznej obróbki odbija światło w sposób anizotropowy, zależny od kierunku jego padania – w sposób zależny od usytuowania powierzchni względem źródła światła. Dobrym przykładem powierzchni wykazującej naturalne właściwości anizotropowe jest powierzchnia drewna. Odbija ona światło zależnie od kata między kierunkiem padania a kierunkiem słojów przekroju. Powierzchnia metalu poddana obróbce mechanicznej (np. polerowaniu) będzie odbijała światło zależnie od kąta między padającym promieniem, a kierunkiem obróbki. | ||
Linia 43: | Linia 43: | ||
{| border="0" cellpadding="4" width="100%" | {| border="0" cellpadding="4" width="100%" | ||
|width="500px" valign="top"|[[Grafika: | |width="500px" valign="top"|[[Grafika:GKIW_M8_Slajd_06.png|thumb|500px]] | ||
|valign="top"|Najstarszy, z praktycznie wykorzystywanych w grafice komputerowej modeli odbicia, zaproponował Bui Tuong Phong w 1975 roku Model Phonga jest modelem eksperymentalnym, nieuzasadnionym fizycznie i niespełniającym zasady zachowania energii. Mimo to jest, chyba, najczęściej stosowanym modelem odbicia w grafice komputerowej, gdyż pozwala szybko uzyskać rysunki o wystarczająco realistycznych barwach. W literaturze są opisywane metody poprawy modelu Phonga, aby spełniał on zasadę zachowania energii. | |valign="top"|Najstarszy, z praktycznie wykorzystywanych w grafice komputerowej modeli odbicia, zaproponował Bui Tuong Phong w 1975 roku Model Phonga jest modelem eksperymentalnym, nieuzasadnionym fizycznie i niespełniającym zasady zachowania energii. Mimo to jest, chyba, najczęściej stosowanym modelem odbicia w grafice komputerowej, gdyż pozwala szybko uzyskać rysunki o wystarczająco realistycznych barwach. W literaturze są opisywane metody poprawy modelu Phonga, aby spełniał on zasadę zachowania energii. | ||
Linia 56: | Linia 56: | ||
{| border="0" cellpadding="4" width="100%" | {| border="0" cellpadding="4" width="100%" | ||
|width="500px" valign="top"|[[Grafika: | |width="500px" valign="top"|[[Grafika:GKIW_M8_Slajd_07.png|thumb|500px]] | ||
|valign="top"|Funkcja <math>cos^N(\alpha )</math> opisuje odbicie kierunkowe (zwierciadlane) przy czy N charakteryzuje dany materiał (właściwości odbiciowe powierzchni). Warto zwrócić uwagę na właściwości tej funkcji. Idealne odbicie kierunkowe to takie, w którym odbicie występuje tylko dla zerowego kąta <math>\alpha </math> (to znaczy poza tym kątem natężenie światła odbitego jest zerowe). Funkcja <math>cos^N(\alpha )</math> opisuje taki przypadek dla N dążącego do nieskończoności. Zatem im większa wartość N tym bardziej powierzchnia zbliża się do powierzchni lustrzanej. Tym lepsze właściwości kierunkowe charakteryzują odbicie od tej powierzchni. W praktyce już dla <math>N</math> rzędu kilkuset mamy do czynienia z dobrym lustrem. | |valign="top"|Funkcja <math>cos^N(\alpha )</math> opisuje odbicie kierunkowe (zwierciadlane) przy czy N charakteryzuje dany materiał (właściwości odbiciowe powierzchni). Warto zwrócić uwagę na właściwości tej funkcji. Idealne odbicie kierunkowe to takie, w którym odbicie występuje tylko dla zerowego kąta <math>\alpha </math> (to znaczy poza tym kątem natężenie światła odbitego jest zerowe). Funkcja <math>cos^N(\alpha )</math> opisuje taki przypadek dla N dążącego do nieskończoności. Zatem im większa wartość N tym bardziej powierzchnia zbliża się do powierzchni lustrzanej. Tym lepsze właściwości kierunkowe charakteryzują odbicie od tej powierzchni. W praktyce już dla <math>N</math> rzędu kilkuset mamy do czynienia z dobrym lustrem. | ||
Linia 63: | Linia 63: | ||
{| border="0" cellpadding="4" width="100%" | {| border="0" cellpadding="4" width="100%" | ||
|width="500px" valign="top"|[[Grafika: | |width="500px" valign="top"|[[Grafika:GKIW_M8_Slajd_08.png|thumb|500px]] | ||
|valign="top"|Na rysunku widać wpływ parametrów modelu odbicia Phonga na obraz odbicia światła na symulowanej powierzchni. Górny rząd charakteryzuje się przewagą odbicia rozproszonego, dolny – kierunkowego. Jednocześnie kolumny charakteryzują odbicie kierunkowe od lewej o złych parametrach odbicia kierunkowego (n=5) do prawej zbliżającej się do właściwości lustrzanych. | |valign="top"|Na rysunku widać wpływ parametrów modelu odbicia Phonga na obraz odbicia światła na symulowanej powierzchni. Górny rząd charakteryzuje się przewagą odbicia rozproszonego, dolny – kierunkowego. Jednocześnie kolumny charakteryzują odbicie kierunkowe od lewej o złych parametrach odbicia kierunkowego (n=5) do prawej zbliżającej się do właściwości lustrzanych. | ||
Linia 70: | Linia 70: | ||
{| border="0" cellpadding="4" width="100%" | {| border="0" cellpadding="4" width="100%" | ||
|width="500px" valign="top"|[[Grafika: | |width="500px" valign="top"|[[Grafika:GKIW_M8_Slajd_09.png|thumb|500px]] | ||
|valign="top"|Strumień świetlny (całoprzestrzenny) danego źródła światła opisuje ilość energii przenoszonej przez fale świetlne w jednostce czasu. Strumień jest podstawową wielkością fotometryczną – odpowiednikiem mocy. Strumień świetlny charakteryzuje przede wszystkim źródło światła, chociaż mówimy również o strumieniu odbitym. | |valign="top"|Strumień świetlny (całoprzestrzenny) danego źródła światła opisuje ilość energii przenoszonej przez fale świetlne w jednostce czasu. Strumień jest podstawową wielkością fotometryczną – odpowiednikiem mocy. Strumień świetlny charakteryzuje przede wszystkim źródło światła, chociaż mówimy również o strumieniu odbitym. | ||
Linia 79: | Linia 79: | ||
{| border="0" cellpadding="4" width="100%" | {| border="0" cellpadding="4" width="100%" | ||
|width="500px" valign="top"|[[Grafika: | |width="500px" valign="top"|[[Grafika:GKIW_M8_Slajd_10.png|thumb|500px]] | ||
|valign="top"|Luminancja jest najbliższa pojęciowo odczuciu intensywności światła spośród wielkości fotometrycznych. Odpowiada pojęciom jaskrawości (dla obiektów emitujących światło) i jasności (dla obiektów odbijających). Warto pamiętać, że odczucia jaskrawości lub jasności są wrażeniami bardzo subiektywnymi. Dodatkowo silnie zależą różnych czynników zewnętrznych np. od jasności tła na jakim jest obserwowany obiekt oraz od stanu adaptacji wzroku. | |valign="top"|Luminancja jest najbliższa pojęciowo odczuciu intensywności światła spośród wielkości fotometrycznych. Odpowiada pojęciom jaskrawości (dla obiektów emitujących światło) i jasności (dla obiektów odbijających). Warto pamiętać, że odczucia jaskrawości lub jasności są wrażeniami bardzo subiektywnymi. Dodatkowo silnie zależą różnych czynników zewnętrznych np. od jasności tła na jakim jest obserwowany obiekt oraz od stanu adaptacji wzroku. | ||
Luminancja nie zależy od odległości od obiektu. Jeśli rozpatrzymy źródło światła i wszystkie parametry geometryczne są stałe, to luminancja źródła jest proporcjonalna do energii emitowanej przez źródło. | Luminancja nie zależy od odległości od obiektu. Jeśli rozpatrzymy źródło światła i wszystkie parametry geometryczne są stałe, to luminancja źródła jest proporcjonalna do energii emitowanej przez źródło. |
Wersja z 10:37, 22 lut 2007
Wykład
![]() |
![]() |
![]() |
![]() |
Literatura
![]() |