PF Moduł 4: Różnice pomiędzy wersjami
Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Nie podano opisu zmian |
Nie podano opisu zmian |
||
Linia 155: | Linia 155: | ||
{| border="0" cellpadding="4" width="100%" | {| border="0" cellpadding="4" width="100%" | ||
|width="500px" valign="top"|[[Grafika:PF_M4_Slajd13.png|thumb|500px]] | |width="500px" valign="top"|[[Grafika:PF_M4_Slajd13.png|thumb|500px]] | ||
|valign="top"|Promienie rentgenowskie, odkryte przypadkowo a następnie zbadane przez W.Röntgena, powstają w lampie w której między żarzoną katodą a anodą przyłożone jest wysokie napięcie rzędu kilowoltów. Elektrony, które są emitowane z katody na skutek jej żarzenia są przyspieszane do dużych prędkości przez silne pole elektryczne. Następnie zderzają się z anodą i w wyniku tego powstają promienie o specyficznych własnościach. Są to promienie bardzo przenikliwe, nie posiadające ładunku. Promienie te mają naturę fali elektromagnetycznej o bardzo małej długości fali, w przedziale (5 \cdot 10^{-9} \div 1 \cdto 10^{-11} ) m, czyli kilka rzędów wielkości krótsze niż widzialne. Stwierdzenie falowej natury tak krótkich fal wymaga zastosowania szczególnych obiektów na których można zaobserwować efekty dyfrakcyjne. Chodzi mianowicie o rozpraszanie na krysztale. Typowe odległości między regularnie rozmieszczonymi w krysztale molekułami są rzędu <math>10^{-10}</math> m a więc odpowiadają zakresowi długości fal rentgenowskich. Przy odbiciu od kryształu obserwuje się typowe dla fal sekwencje maksimów i można wyznaczyć długości fal i ich widma. Ale jaki mechanizm odpowiada za powstanie promieni rentgenowskich? | |valign="top"|Promienie rentgenowskie, odkryte przypadkowo a następnie zbadane przez W.Röntgena, powstają w lampie w której między żarzoną katodą a anodą przyłożone jest wysokie napięcie rzędu kilowoltów. Elektrony, które są emitowane z katody na skutek jej żarzenia są przyspieszane do dużych prędkości przez silne pole elektryczne. Następnie zderzają się z anodą i w wyniku tego powstają promienie o specyficznych własnościach. Są to promienie bardzo przenikliwe, nie posiadające ładunku. Promienie te mają naturę fali elektromagnetycznej o bardzo małej długości fali, w przedziale <math>(5 \cdot 10^{-9} \div 1 \cdto 10^{-11} )</math> m, czyli kilka rzędów wielkości krótsze niż widzialne. Stwierdzenie falowej natury tak krótkich fal wymaga zastosowania szczególnych obiektów na których można zaobserwować efekty dyfrakcyjne. Chodzi mianowicie o rozpraszanie na krysztale. Typowe odległości między regularnie rozmieszczonymi w krysztale molekułami są rzędu <math>10^{-10}</math> m a więc odpowiadają zakresowi długości fal rentgenowskich. Przy odbiciu od kryształu obserwuje się typowe dla fal sekwencje maksimów i można wyznaczyć długości fal i ich widma. Ale jaki mechanizm odpowiada za powstanie promieni rentgenowskich? | ||
|} | |} | ||
---- | ---- |