Teoria informacji/TI Wykład 4: Różnice pomiędzy wersjami
Nie podano opisu zmian |
Nie podano opisu zmian |
||
Linia 36: | Linia 36: | ||
</math></center> | </math></center> | ||
Znów możemy rozszerzyć <math>\ell'</math> na wszystkie <math>s</math> w taki sposób, żeby zachować nierówność Krafta. Aby obliczyć średnią długość kodu musimy zauważyć, że w tym przypadku mieliśmy zawsze <math>\ell (s) = \log_r \frac{1}{p(s) }</math> gdy tylko <math>p(s) > 0</math>. (Wynika to z tego, że z definicji <math>\ell</math> musi być <math>\frac{1}{r^{\ell (s)}} \leq p(s)</math> i <math>1 = \sum_{p(s) > 0} \frac{1}{r^{\ell (s)}} = \sum_{p(s) > 0} p(s)</math>, a więc <math> p(s) = \frac{1}{r^{\ell (s)}}</math> gdy <math>p(s) > 0</math>.) Kod o długości <math>\ell'</math> spełnia | Znów możemy rozszerzyć <math>\ell'</math> na wszystkie <math>s</math> w taki sposób, żeby zachować nierówność Krafta. Aby obliczyć średnią długość kodu musimy zauważyć, że w tym przypadku mieliśmy zawsze <math>\ell (s) = \log_r \frac{1}{p(s) }</math> gdy tylko <math>p(s) > 0</math>. (Wynika to z tego, że z definicji <math>\ell</math> musi być <math>\frac{1}{r^{\ell (s)}} \leq p(s)</math> i <math>1 = \sum_{p(s) > 0} \frac{1}{r^{\ell (s)}} = \sum_{p(s) > 0} p(s)</math>, a więc <math> p(s) = \frac{1}{r^{\ell (s)}}</math> gdy <math>p(s) > 0</math>.) | ||
<center><math>\sum_{s \in S} p(s) \cdot {\ell}' (s) = \sum_{p(s) > 0} p(s) \cdot {\ell}' (s) = p(s') + \sum_{p(s) > 0} p(s) \cdot {\ell} (s) = p(s') + H_r (S)</math></center> | |||
Kod o długości <math>\ell'</math> spełnia | |||
<center><math>\sum_{s \in S} p(s) \cdot {\ell}' (s) = \sum_{p(s) > 0} p(s) \cdot {\ell}' (s) = p(s') + \sum_{p(s) > 0} p(s) \cdot {\ell} (s) </math></center> | |||
<center><math> = p(s') + H_r (S)</math></center> | |||
Ostatecznie <math>L_r (S) \leq H_r (S) + 1</math> i nierówność nie jest ostra tylko wtedy, gdy nie istnieje żadne <math>0 < p(s') <1</math>.}} | Ostatecznie <math>L_r (S) \leq H_r (S) + 1</math> i nierówność nie jest ostra tylko wtedy, gdy nie istnieje żadne <math>0 < p(s') <1</math>.}} |
Wersja z 20:02, 1 paź 2006
Aby oszacować , zaczniemy od uzupełnienia naszej nierówności o górne ograniczenie.
Twierdzenie [Kod Shannona-Fano]
W ten sposób mamy
Dowód
dla tych , dla których . Wtedy
Rozważmy kilka przypadków. W najprostszym, kiedy , powyższa nierówność odpowiada dokładnie nierówności Krafta, a zatem istnieje kod spełniający dla wszystkich . Uwzględniając, że , dostajemy
Załóżmy zatem, że może być równe 0. Jeśli
to łatwo możemy rozszerzyć definicję na wszystkie s, tak że nierówność Krafta dalej będzie spełniona. Będzie zatem istniał kod o długościach , spełniający zawsze, gdy , a więc
(Pamiętamy o naszej konwencji .)
Ostatni przypadek to taki, gdy
Wybierzmy s’, takie że , i zdefiniujmy nowe długości
Znów możemy rozszerzyć na wszystkie w taki sposób, żeby zachować nierówność Krafta. Aby obliczyć średnią długość kodu musimy zauważyć, że w tym przypadku mieliśmy zawsze gdy tylko . (Wynika to z tego, że z definicji musi być i , a więc gdy .)
Kod o długości spełnia

Jesteśmy gotowi do sformułowania pierwszego z głównych twierdzeń tego wykładu:
Twierdzenie [Pierwsze Twierdzenie Shannona]
Dla każdej skończonej przestrzeni probabilistycznej S i
Dowód