ASD Ćwiczenia 11: Różnice pomiędzy wersjami
Nie podano opisu zmian |
|||
Linia 1: | Linia 1: | ||
Niech <math>G=(V,E)</math> będzie grafem spójnym, a <math>w:E\rightarrow Z</math> funkcją, która każdej krawędzi <math>e</math> przypisuje | Niech <math>G=(V,E)</math> będzie grafem spójnym, a <math>w:E\rightarrow Z</math> funkcją, która każdej krawędzi <math>e</math> przypisuje nieujemną, całkowitoliczbową wagę <math>w(e)</math>. Dla każdego podgrafu <math>G'=(V',E')</math> definujemy wagę <math>W(G')</math> jako sumę wag jego krawędzi. Drzewo rozpinające grafu <math>G</math>, którego waga jest nie większa o od wagi każdego innego drzewa rozpinającego w tym grafie nazywamy minimalnym drzewem rozpinającym grafu <math>G</math>. W grafie może być więcej niż jedno drzewo rozpinające. | ||
==Zadanie 1== | ==Zadanie 1== | ||
Udowodnij, że jeśli wagi krawędzi są parami różne, | Udowodnij, że jeśli wagi krawędzi są parami różne, w grafie istnieje dokładnie jedno minimalne drzewo rozpinające. | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | <div class="mw-collapsible mw-made=collapsible mw-collapsed"> | ||
Linia 30: | Linia 30: | ||
<div class="mw-collapsible-content" style="display:none"> | <div class="mw-collapsible-content" style="display:none"> | ||
Wykorzystaj algorytm podany we wskazówce do zadania 1. W trakcie działania tego algorytmu graf <math>T=(V,F)</math> jest lasem, czyli zbiorem rozłącznych drzew. Zbiory wierzchołków drzew w lesie tworzą podział zbioru <math>V</math>. Żeby sprawdzić, czy dołączenie nowej krawędzi do lasu powoduje powstanie cyklu, wystarczy wiedzieć, czy końce tej krawędzi łączą wierzchołki w tym samym drzewie (zbiorze). Dodanie | Wykorzystaj algorytm podany we wskazówce do zadania 1. W trakcie działania tego algorytmu graf <math>T=(V,F)</math> jest lasem, czyli zbiorem rozłącznych drzew. Zbiory wierzchołków drzew w lesie tworzą podział zbioru <math>V</math>. Żeby sprawdzić, czy dołączenie nowej krawędzi do lasu powoduje powstanie cyklu, wystarczy wiedzieć, czy końce tej krawędzi łączą wierzchołki w tym samym drzewie (zbiorze). Dodanie krawędzi powoduje połączenia dwóch drzew (zbirów) w jedno (jeden). Naturalną strukturą danych do implementacji dynamicznego lasu <math>T</math> jest struktura zbiorów rozłącznych (Find-Union). Podany algorytm jest znany pod nazwą algorytmu Kruskala. | ||
</div> | </div> | ||
</div> | </div> | ||
Linia 36: | Linia 36: | ||
==Zadanie 3== | ==Zadanie 3== | ||
W przedstawionym przez nas algorytmie Dijkstry obliczaliśmy długości najlżejszych ścieżek łączących wszystkie wierzchołki grafu z wyróżnionym wierzchołkiem <math>s</math>. Zastanów się, w jaki sposób poprawić algorytm Dijkstry, żeby po zakończeniu jego działania można było dla każdego wierzchołka wyznaczyć najlżejszą | W przedstawionym przez nas algorytmie Dijkstry obliczaliśmy długości najlżejszych ścieżek łączących wszystkie wierzchołki grafu z wyróżnionym wierzchołkiem <math>s</math>. Zastanów się, w jaki sposób poprawić algorytm Dijkstry, żeby po zakończeniu jego działania można było dla każdego wierzchołka wyznaczyć najlżejszą ścieżkę łączącą ten wierzchołek z <math>s</math> w czasie proporcjonalnym do długości tej ścieżki. | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | <div class="mw-collapsible mw-made=collapsible mw-collapsed"> |
Wersja z 12:47, 30 wrz 2006
Niech będzie grafem spójnym, a funkcją, która każdej krawędzi przypisuje nieujemną, całkowitoliczbową wagę . Dla każdego podgrafu definujemy wagę jako sumę wag jego krawędzi. Drzewo rozpinające grafu , którego waga jest nie większa o od wagi każdego innego drzewa rozpinającego w tym grafie nazywamy minimalnym drzewem rozpinającym grafu . W grafie może być więcej niż jedno drzewo rozpinające.
Zadanie 1
Udowodnij, że jeśli wagi krawędzi są parami różne, w grafie istnieje dokładnie jedno minimalne drzewo rozpinające.
Wskazówka
Zadanie 2
Załóżmy, że graf jest reprezentowany przez listy sąsiedztw i krawędzie grafu są już posortowane niemalejąco według wag. Zaproponuj algorytm, który w czasie obliczy dla G minimalne drzewo rozpinające.
Wskazówka
Zadanie 3
W przedstawionym przez nas algorytmie Dijkstry obliczaliśmy długości najlżejszych ścieżek łączących wszystkie wierzchołki grafu z wyróżnionym wierzchołkiem . Zastanów się, w jaki sposób poprawić algorytm Dijkstry, żeby po zakończeniu jego działania można było dla każdego wierzchołka wyznaczyć najlżejszą ścieżkę łączącą ten wierzchołek z w czasie proporcjonalnym do długości tej ścieżki.
Rozwiązanie
Zadanie 4
Niech będzie spójnym grafem z wagami i niech będzie wyróżnionym wierzchołkiem. Dla każdego wierzchołka ustalmy jedną, najlżejszą ścieżkę łączącą z .
a) Niech będzie zbiorem wszystkich krawędzi występujących na ustalonych ścieżkach. Udowodnij, że podgraf jest drzewem. Drzewo nazywamy drzewem najlżejszych ścieżek. Może być wiele drzew najlżejszych ścieżek.
b) W rozwiązaniu zadania 3 pokazaliśmy, w jaki sposób obliczyć drzewo najlżejszych ścieżek algorytmem Dijkstry. Zmodyfikuj algorytm Dijsktry w taki sposób, żeby posłużył on do obliczania minimalnego drzewa rozpinającego.
Rozwiązanie