MN05LAB: Różnice pomiędzy wersjami
Nie podano opisu zmian |
mNie podano opisu zmian |
||
Linia 1: | Linia 1: | ||
<!-- | <!-- | ||
Konwertowane z pliku LaTeX przez latex2mediawiki, zob. http://www.ii.uj.edu.pl/ pawlik1/latex2mediawiki.php. | Konwertowane z pliku LaTeX przez latex2mediawiki, zob. http://www.ii.uj.edu.pl/ pawlik1/latex2mediawiki.php. | ||
Linia 333: | Linia 332: | ||
{{algorytm||| | {{algorytm||| | ||
<pre> | <pre>Znajdź rozkład <math>\displaystyle PA = LU</math>; | ||
Utwórz macierz <math>\displaystyle B = [b_1,\ldots,b_k]</math>; | Utwórz macierz <math>\displaystyle B = [b_1,\ldots,b_k]</math>; | ||
Rozwiąż <math>\displaystyle LY = B</math>; | Rozwiąż <math>\displaystyle LY = B</math>; |
Wersja z 21:11, 29 wrz 2006
Rozwiązywanie układów równań liniowych
<<< Powrót do strony głównej przedmiotu Metody numeryczne
Oglądaj wskazówki i rozwiązania __SHOWALL__
Ukryj wskazówki i rozwiązania __HIDEALL__
Uwaga
Niektóre fragmenty zadań wymagają wykorzystania procedur LAPACKa; te części odłóż do momentu, gdy opanujesz następny wykład, dotyczący m.in. bibliotek algebry liniowej.
Ćwiczenie: Metoda Cholesky'ego
Ważnym przykładem macierzy szczególnej postaci są macierze symetryczne i dodatnio określone. Są to macierze spełniające warunki:
Dla takich macierzy można nieco zmniejszyć koszt kombinatoryczny i zużycie pamięci, przeprowadzając trochę inny rozkład na macierze trójkątne: tak, aby otrzymać rozkład
zamiast , przy czym jest tu jak zwykle macierzą
trójkątną dolną z jedynkami na przekątnej, a jest macierzą
diagonalną z dodatnimi elementami na diagonali. Opracuj taki algorytm. W jego
implementacji możesz porównywać się z procedurą LAPACKa DPOSV
.
Inny wariant tego samego
rozkładu to tak zwany rozkład Cholesky'ego--Banachiewicza, w którym, przy tych
samych założeniach na , szukamy rozkładu wykorzystującego tylko jedną macierz
trójkątną dolną:
(oczywiście tym razem nie żądamy, aby miała na diagonali jedynki). Jaka jest relacja między rozkładem a ?
Ćwiczenie: Mnożyć przez odwrotność to nie zawsze to samo...
W Octave układ równań rozwiązujemy korzystając z "operatora rozwiązywania równania"
x = A \ b;
Ale w Octave jest także funkcja inv
, wyznaczająca macierz
odwrotną, więc niektóre (nie najlepsze, oględnie mówiąc) podręczniki zalecają
x = inv(A)*b;
Przedyskutuj, które podejście jest lepsze i dlaczego. Przeprowadź eksperymenty numeryczne weryfikujące twoją tezę.
Ćwiczenie: Wybór elementu głównego jest naprawdę ważny!
Rozwiąż prosty układ równań
czterema sposobami:
- na kartce papieru (dokładnie!)
- w komputerze, w arytmetyce podwójnej precyzji, korzystając z rozkładu LU bez wyboru elementu głównego
- jak poprzednio, ale z wyborem elementu głównego w kolumnie
- w LAPACKu lub Octave.
Porównaj uzyskane rozwiązania i wyciągnij wnioski.
Ćwiczenie
Zapisz w Octave algorytm rozkładu LU macierzy (bez wyboru elementu głównego) działający in situ.
Wykorzystaj go do napisania funkcji, która rozwiąże układ równań .
Przetestuj tę funkcję na kilku macierzach i porównaj czas jego działania z czasem
wykonania operacji x = A\b
.
Spróbuj zastosować swój algorytm do kilku specjalnych macierzy:
- Hilberta dużego wymiaru
- diagonalnej z jednym elementem bardzo małym (a nawet równym zero)
Ćwiczenie: Układy równań z wieloma prawymi stronami
Podaj sposób taniego wyznaczenia rozwiązania sekwencji układów równań z tą samą macierzą i różnymi prawymi stronami:
Układy równań z tą samą macierzą, ale ze zmieniającą się prawą stroną równania powstają często na przykład przy rozwiązywaniu równań różniczkowych cząstkowych, gdzie prawa strona układu odpowiada zmieniającym się warunkom brzegowym.
Ćwiczenie: Obliczanie wyznacznika macierzy
Bardzo rzadko w praktyce numerycznej zdarza się potrzeba obliczenia wartości wyznacznika macierzy . Zaproponuj metodę obliczania oraz wskaż, jakiego rodzaju problemy numeryczne możesz napotkać.