ASD Ćwiczenia 11: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Diks (dyskusja | edycje)
Nie podano opisu zmian
Diks (dyskusja | edycje)
Linia 7: Linia 7:
Wskazówka  
Wskazówka  
<div class="mw-collapsible-content" style="display:none">
<div class="mw-collapsible-content" style="display:none">
Udowodnij, że następujący algorytm zachłanny oblicza minimalne drzewo rozpinające dla spójnego grafu <math>G=(V,E)</math>, a następnie wykaż, że gdy wagi są parami różne, to każde inne drzewo ma wagę większą.
Wykaż, że następujący algorytm zachłanny oblicza minimalne drzewo rozpinające dla spójnego grafu <math>G=(V,E)</math>, a następnie wykaż, że gdy wagi są parami różne, to każde inne drzewo ma wagę większą.


  1 posortuj krawędzie według wag, od najmniejszej do największej, i niech
  1 posortuj krawędzie według wag, od najmniejszej do największej, i niech

Wersja z 11:50, 28 wrz 2006

Niech G=(V,E) będzie grafem spójnym, a w:EZ funkcją, która każdej krawędzi e przypisuje nieujemą, całkowitoliczbową wagę w(e). Dla każdego podgrafu G=(V,E) definujemy wagę W(G) jako sumę wag jego krawędzi. Drzewo rozpinające grafu G, którego waga jest nie większa o od wagi każdego innego drzewa rozpinającego w tym grafie nazywamy minimalnym drzewem rozpinającym grafu G. W grafie może być więcej niż jedno drzewo rozpinające.

Zadanie 1

Udowodnij, że jeśli wagi krawędzi są parami różne, to w grafie istnieje dokładnie jedno minimalne drzewo rozpinające.

Wskazówka