Zaawansowane algorytmy i struktury danych/Ćwiczenia 5: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Sank (dyskusja | edycje)
Sank (dyskusja | edycje)
Linia 15: Linia 15:
{{kotwica|zadanie 2|}}
{{kotwica|zadanie 2|}}


'''Układ ograniczeń różnicowych''' zadany jest poprzez zbiór zmiennych <math>X=\{x_0, \ldots, x_n\}</math> oraz zbiór nierówności liniowych <math>O=\{x_{i_0} - x_{j_0} \le b_0, ldots, \{x_{i_m} - x_{j_m} \le b_m\} </math>, gdzie <math>i_k, j_k \in X</math>, <math>b_k\in \mathcal{R}</math> dla <math>k = 0,\ldots, m</math>. Rozwiązaniem układu ograniczeń różnicowych jest  wartościowanie zmiennych <math>X</math> dla którego spełnione są wszystkie nierówności z <math>O</math>. Zaproponuj efektywny algorytm znajdujący rozwiązanie układu ograniczeń liniowych.
'''Układ ograniczeń różnicowych''' zadany jest poprzez zbiór zmiennych <math>X=\{x_0, \ldots, x_n\}</math> oraz zbiór nierówności liniowych <math>O=\{x_{i_0} - x_{j_0} \le b_0, \ldots, x_{i_m} - x_{j_m} \le b_m\} </math>, gdzie <math>i_k, j_k \in X</math>, <math>b_k\in \mathcal{R}</math> dla <math>k = 0,\ldots, m</math>. Rozwiązaniem układu ograniczeń różnicowych jest  wartościowanie zmiennych <math>X</math> dla którego spełnione są wszystkie nierówności z <math>O</math>. Zaproponuj efektywny algorytm znajdujący rozwiązanie układu ograniczeń liniowych.


<div class="mw-collapsible mw-made=collapsible mw-collapsed">'''Rozwiązanie'''   
<div class="mw-collapsible mw-made=collapsible mw-collapsed">'''Rozwiązanie'''   
Linia 40: Linia 40:
</div>
</div>
</div>
</div>


== Zadanie 3 ==  
== Zadanie 3 ==  

Wersja z 17:28, 23 lip 2006

Zadanie 1

Zaproponuj efektywny algorytm obliczania najkrótszych ścieżek z jednego wierzchołka w [[dag|DAGu]] o dowolnych wagach krawędzi.

Rozwiązanie

Zadanie 2

Układ ograniczeń różnicowych zadany jest poprzez zbiór zmiennych X={x0,,xn} oraz zbiór nierówności liniowych O={xi0xj0b0,,ximxjmbm}, gdzie ik,jkX, bk dla k=0,,m. Rozwiązaniem układu ograniczeń różnicowych jest wartościowanie zmiennych X dla którego spełnione są wszystkie nierówności z O. Zaproponuj efektywny algorytm znajdujący rozwiązanie układu ograniczeń liniowych.

Rozwiązanie

Zadanie 3


Zaproponuj jak wykorzystać algorytm Bellmana-Forda do sprawdzenia, czy w grafie G=(V,E) i wagach krawędzi opisanych funkcją w:E istnieje cykl o ujemnej wadze.

Rozwiązanie