Zaawansowane algorytmy i struktury danych/Ćwiczenia 5: Różnice pomiędzy wersjami
Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Linia 17: | Linia 17: | ||
'''Układ ograniczeń różnicowych''' zadany jest poprzez zbiór zmiennych <math>X=\{x_0, \ldots, x_n\}</math> oraz zbiór nierówności liniowych <math>O=\{x_{i_0} - x_{j_0} \le b_0, ldots, \{x_{i_m} - x_{j_m} \le b_m\} </math>, gdzie <math>i_k, j_k \in X</math>, <math>b_k\in \mathcal{R}</math> dla <math>k = 0,\ldots, m</math>. Rozwiązaniem układu ograniczeń różnicowych jest wartościowanie zmiennych <math>X</math> dla którego spełnione są wszystkie nierówności z <math>O</math>. Zaproponuj efektywny algorytm znajdujący rozwiązanie układu ograniczeń liniowych. | '''Układ ograniczeń różnicowych''' zadany jest poprzez zbiór zmiennych <math>X=\{x_0, \ldots, x_n\}</math> oraz zbiór nierówności liniowych <math>O=\{x_{i_0} - x_{j_0} \le b_0, ldots, \{x_{i_m} - x_{j_m} \le b_m\} </math>, gdzie <math>i_k, j_k \in X</math>, <math>b_k\in \mathcal{R}</math> dla <math>k = 0,\ldots, m</math>. Rozwiązaniem układu ograniczeń różnicowych jest wartościowanie zmiennych <math>X</math> dla którego spełnione są wszystkie nierówności z <math>O</math>. Zaproponuj efektywny algorytm znajdujący rozwiązanie układu ograniczeń liniowych. | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> '''Rozwiązanie''' | <div class="mw-collapsible mw-made=collapsible mw-collapsed">'''Rozwiązanie''' | ||
<div class="mw-collapsible-content" style="display:none"> | <div class="mw-collapsible-content" style="display:none"> | ||
Linia 42: | Linia 42: | ||
{{zadanie| | == Zadanie 3 == | ||
{{kotwica|zadanie 2|}} | |||
Zaproponuj jak wykorzystać algorytm Bellmana-Forda do sprawdzenia, czy w grafie <math>G=(V,E)</math> | Zaproponuj jak wykorzystać algorytm Bellmana-Forda do sprawdzenia, czy w grafie <math>G=(V,E)</math> | ||
i wagach krawędzi opisanych funkcją <math>w:E \to \mathcal{R}</math> istnieje cykl o ujemnej wadze. | i wagach krawędzi opisanych funkcją <math>w:E \to \mathcal{R}</math> istnieje cykl o ujemnej wadze. | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed">'''Rozwiązanie''' | |||
<div class="mw-collapsible-content" style="display:none"> | |||
</div> | |||
</div> |
Wersja z 17:28, 23 lip 2006
Zadanie 1
Zaproponuj efektywny algorytm obliczania najkrótszych ścieżek z jednego wierzchołka w [[dag|DAGu]] o dowolnych wagach krawędzi.
Rozwiązanie
Zadanie 2
Układ ograniczeń różnicowych zadany jest poprzez zbiór zmiennych oraz zbiór nierówności liniowych , gdzie , dla . Rozwiązaniem układu ograniczeń różnicowych jest wartościowanie zmiennych dla którego spełnione są wszystkie nierówności z . Zaproponuj efektywny algorytm znajdujący rozwiązanie układu ograniczeń liniowych.
Rozwiązanie
Zadanie 3
Zaproponuj jak wykorzystać algorytm Bellmana-Forda do sprawdzenia, czy w grafie
i wagach krawędzi opisanych funkcją istnieje cykl o ujemnej wadze.
Rozwiązanie