Wstęp do programowania / Ćwiczenia 5: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Aneczka (dyskusja | edycje)
Nie podano opisu zmian
Dorota (dyskusja | edycje)
Nie podano opisu zmian
Linia 33: Linia 33:


{{cwiczenie| 1|pytanko 1|<div class="mw-collapsible mw-made=collapsible mw-collapsed"><div class="mw-collapsible-content" style="display:none">
{{cwiczenie| 1|pytanko 1|<div class="mw-collapsible mw-made=collapsible mw-collapsed"><div class="mw-collapsible-content" style="display:none">
Jaka będzie wartość A[l] w przypadku gdy x nie ma w tablicy A ?
Jaka będzie wartość A[l] w przypadku, gdy x nie ma w tablicy A ?
</div>
</div>
</div>}}
</div>}}
Linia 65: Linia 65:


{{cwiczenie| 1|pytanko 1|<div class="mw-collapsible mw-made=collapsible mw-collapsed"><div class="mw-collapsible-content" style="display:none">
{{cwiczenie| 1|pytanko 1|<div class="mw-collapsible mw-made=collapsible mw-collapsed"><div class="mw-collapsible-content" style="display:none">
Jaka będzie wartość A[l] w przypadku gdy x nie ma w tablicy A ?
Jaka będzie wartość A[l] w przypadku, gdy x nie ma w tablicy A ?
</div>
</div>
</div>}}
</div>}}
Linia 73: Linia 73:


{{wskazowka| 1||<div class="mw-collapsible mw-made=collapsible mw-collapsed"><div class="mw-collapsible-content" style="display:none">
{{wskazowka| 1||<div class="mw-collapsible mw-made=collapsible mw-collapsed"><div class="mw-collapsible-content" style="display:none">
Trzeba użyć wyszukiwania binarnego a nie liniowego.
Trzeba użyć wyszukiwania binarnego, a nie liniowego.
</div>
</div>
</div>}}
</div>}}
Linia 93: Linia 93:


== Zadanie 4 (Wartość równa indeksowi)==
== Zadanie 4 (Wartość równa indeksowi)==
Dana jest posortowana rosnąco tablica A typu array[1..N] of integer.  Sprawdź czy występuje w niej element o wartości równej swojemu indeksowi. Jeśli tak to wyznacz ten indeks, jeśli nie to funkcja ma dać wartość 0.
Dana jest posortowana rosnąco tablica A typu array[1..N] of integer.  Sprawdź czy występuje w niej element o wartości równej swojemu indeksowi. Jeśli tak, to wyznacz ten indeks, jeśli nie, to funkcja ma dać wartość 0.


{{wskazowka| 1||<div class="mw-collapsible mw-made=collapsible mw-collapsed"><div class="mw-collapsible-content" style="display:none">
{{wskazowka| 1||<div class="mw-collapsible mw-made=collapsible mw-collapsed"><div class="mw-collapsible-content" style="display:none">
Linia 128: Linia 128:
Dana jest tablica A typu array[1..N] of integer, w której wartości ułożone są w ciąg bitoniczny (czyli istnieje 1 &le; i &le; N, takie że dla wszystkich k, takich że 1 &le; k < i zachodzi A[k] < A[k+1] a dla wszystkich k, takich że  i &le; k < N  zachodzi A[k] > A[k+1]). Znajdź maksimum w tym ciągu.
Dana jest tablica A typu array[1..N] of integer, w której wartości ułożone są w ciąg bitoniczny (czyli istnieje 1 &le; i &le; N, takie że dla wszystkich k, takich że 1 &le; k < i zachodzi A[k] < A[k+1] a dla wszystkich k, takich że  i &le; k < N  zachodzi A[k] > A[k+1]). Znajdź maksimum w tym ciągu.


{{wskazowka| 1||<div class="mw-collapsible mw-made=collapsible mw-collapsed"><div class="mw-collapsible-content" style="display:none">Szukamy pierwszego elementu dla którego A[i] > A[i+1]. Trzeba uważać na przypadek gdy maksimum jest w A[N].
{{wskazowka| 1||<div class="mw-collapsible mw-made=collapsible mw-collapsed"><div class="mw-collapsible-content" style="display:none">Szukamy pierwszego elementu, dla którego A[i] > A[i+1]. Trzeba uważać na przypadek gdy maksimum jest w A[N].
</div>
</div>
</div>}}
</div>}}
Linia 184: Linia 184:
</div>}}
</div>}}


{{wskazowka| 2||<div class="mw-collapsible mw-made=collapsible mw-collapsed"><div class="mw-collapsible-content" style="display:none">Oczywiście lepiej jest to zrobic binarnie. Szukamy takiej liczby całkowitej i z przedziału [1..x], że (i-1)*(i-1) < x &le;  i*i.  
{{wskazowka| 2||<div class="mw-collapsible mw-made=collapsible mw-collapsed"><div class="mw-collapsible-content" style="display:none">Oczywiście lepiej jest to zrobić binarnie. Szukamy takiej liczby całkowitej i z przedziału [1..x], że (i-1)*(i-1) < x &le;  i*i.  
</div>
</div>
</div>}}
</div>}}
Linia 246: Linia 246:


{{wskazowka| 1||<div class="mw-collapsible mw-made=collapsible mw-collapsed"><div class="mw-collapsible-content" style="display:none">
{{wskazowka| 1||<div class="mw-collapsible mw-made=collapsible mw-collapsed"><div class="mw-collapsible-content" style="display:none">
Oczywiście nie chodzi o to by pomnożyć x przez siebie n-1 razy.
Oczywiście nie chodzi o to, by pomnożyć x przez siebie n-1 razy.
</div>
</div>
</div>}}
</div>}}
Linia 323: Linia 323:
</div>}}
</div>}}


{{cwiczenie| 1|pytanko 1|<div class="mw-collapsible mw-made=collapsible mw-collapsed"><div class="mw-collapsible-content" style="display:none">Czy algorytm zachłanny by zadziałał (przedłużamy podciąg o ile rozpatrywany element jest większy równy od ostatniego elementu dotychczas znalezionego podciągu) ?
{{cwiczenie| 1|pytanko 1|<div class="mw-collapsible mw-made=collapsible mw-collapsed"><div class="mw-collapsible-content" style="display:none">Czy algorytm zachłanny by zadziałał (przedłużamy podciąg pod warunkiem, że rozpatrywany element jest większy równy od ostatniego elementu dotychczas znalezionego podciągu) ?
</div>
</div>
</div>}}
</div>}}

Wersja z 16:30, 24 wrz 2006

<<< Powrót do głównej strony wykładu

<<< Powrót do modułu modułu 5

To są zadania na wyszukiwanie binarne.

Zadanie 1 (Pierwsze wystąpienie x)

Dana jest posortowana niemalejąco tablica A typu array[1..N] of integer i x typu integer. Znajdź miejsce pierwszego wystąpienia x (lub 0 gdy nie ma żadnego x)

Rozwiązanie 1

{{{3}}}

Ćwiczenie 1

{{{3}}}

Zadanie 2 (Ostatnie wystąpienie x)

Dana jest posortowana niemalejąco tablica A typu array[1..N] of integer i x typu integer. Znajdź miejsce ostatniego wystąpienia x (lub 0 gdy nie ma żadnego x)

Rozwiązanie 1

{{{3}}}

Ćwiczenie 1

{{{3}}}

Zadanie 3 (Liczba wystąpień x)

Dana jest posortowana niemalejąco tablica A typu array[1..N] of integer i x typu integer. Wyznacz liczbę wystąpień x w tablicy A.

Wskazówka 1

{{{3}}}

Rozwiązanie 1

{{{3}}}

Zadanie 4 (Wartość równa indeksowi)

Dana jest posortowana rosnąco tablica A typu array[1..N] of integer. Sprawdź czy występuje w niej element o wartości równej swojemu indeksowi. Jeśli tak, to wyznacz ten indeks, jeśli nie, to funkcja ma dać wartość 0.

Wskazówka 1

{{{3}}}

Rozwiązanie 1

{{{3}}}

Zadanie 5 (Maksimum w ciągu bitonicznym)

Dana jest tablica A typu array[1..N] of integer, w której wartości ułożone są w ciąg bitoniczny (czyli istnieje 1 ≤ i ≤ N, takie że dla wszystkich k, takich że 1 ≤ k < i zachodzi A[k] < A[k+1] a dla wszystkich k, takich że i ≤ k < N zachodzi A[k] > A[k+1]). Znajdź maksimum w tym ciągu.

Wskazówka 1

{{{3}}}

Rozwiązanie 1

{{{3}}}

Zadanie 6 (Pierwiastek z x)

Napisz program obliczający sufit z pierwiastka z x, dla xεN, x > 0 (oczywiście bez operacji pierwiastek).

Wskazówka 1

{{{3}}}

Rozwiązanie 1

{{{3}}}

Wskazówka 2

{{{3}}}

Rozwiązanie 2

{{{3}}}

Inna wersja zadania

A jak znaleźć podłogę z pierwiastka z x ?

Wskazówka 3

{{{3}}}

Rozwiązanie 3

{{{3}}}

Zadanie 7 (BinPower)

Dla zadanych x,n > 0 wyznacz xn (oczywiscie bez exp i ln).

Wskazówka 1

{{{3}}}

Rozwiązanie 1

{{{3}}}

Zadanie 8 (Najdłuższy podciąg niemalejący)

Dana jest tablica A typu array[1..N] of integer, N > 1. Należy obliczyć długość najdłuższego podciągu niemalejącego w A.

Wskazówka 1

{{{3}}}

Rozwiązanie 1

{{{3}}}

Ćwiczenie 1

{{{3}}}