Języki, automaty i obliczenia/Ćwiczenia 1: Słowa, katenacja - elementy teorii półgrup, półgrupy i monoidy wolne: Różnice pomiędzy wersjami
Nie podano opisu zmian |
Nie podano opisu zmian |
||
Linia 25: | Linia 25: | ||
</div></div> | </div></div> | ||
{{zainteresowani||| | |||
'''Ćwiczenie 3''' | |||
Znajdź wszystkie podpółgrupy (podmonoidy) następujących półgrup (monoidów): | Znajdź wszystkie podpółgrupy (podmonoidy) następujących półgrup (monoidów): | ||
Linia 109: | Linia 110: | ||
)</math>. | )</math>. | ||
</div></div> | </div></div> | ||
{{ | {{zainteresowani||| | ||
'''Ćwiczenie 8''' | |||
Określ minimalny zbiór generatorów monoidów: | Określ minimalny zbiór generatorów monoidów: | ||
Linia 123: | Linia 126: | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie punktu 1 </span><div class="mw-collapsible-content" style="display:none"> | <div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie punktu 1 </span><div class="mw-collapsible-content" style="display:none"> | ||
Najmniejszym zbiorem generatorów jest zbiór <math>\{-1, 1\}</math>, choć nie jest to jedyny możliwy taki zbiór generatorów: warunek ten spełnia również na przykład zbiór <math>\{-2, 3\}</math>. Aby to pokazać, wystarczy dowieść, że da się z niego wygenerować elementy '''1''' oraz '''-1''' i skorzystać z tego, że <math>\{-1, 1\}</math> jest zbiorem generatorów. Mamy <math>1 = (-2)+3</math> oraz <math>-1 = (-2)+(-2)+3</math>. | Najmniejszym zbiorem generatorów jest zbiór <math>\{-1, 1\}</math>, choć nie jest to jedyny możliwy taki zbiór generatorów: warunek ten spełnia również na przykład zbiór <math>\{-2, 3\}</math>. Aby to pokazać, wystarczy dowieść, że da się z niego wygenerować elementy '''1''' oraz '''-1''' i skorzystać z tego, że <math>\{-1, 1\}</math> jest zbiorem generatorów. Mamy <math>1 = (-2)+3</math> oraz <math>-1 = (-2)+(-2)+3</math>. | ||
</div></div> | </div></div> | ||
'''Ćwiczenie 9''' | |||
Dana jest półgrupa <math>\{a,b\}^+</math> oraz jej podpółgrupa generowana przez dwuelementowy zbiór słów <math>\{a, ba\}</math>. | Dana jest półgrupa <math>\{a,b\}^+</math> oraz jej podpółgrupa generowana przez dwuelementowy zbiór słów <math>\{a, ba\}</math>. | ||
Linia 132: | Linia 137: | ||
Jest to zbiór wszystkich (i tylko takich) słów, które nie kończą się literą <math>{b}</math> oraz w których nie występuje podsłowo | Jest to zbiór wszystkich (i tylko takich) słów, które nie kończą się literą <math>{b}</math> oraz w których nie występuje podsłowo | ||
<math>bb</math>. | <math>bb</math>. | ||
</div></div> | </div></div> | ||
'''Ćwiczenie 10''' | |||
W monoidzie wolnym <math>\{a, b\}^*</math> rozważamy następujące podmonoidy: | W monoidzie wolnym <math>\{a, b\}^*</math> rozważamy następujące podmonoidy: | ||
Linia 140: | Linia 147: | ||
: (2) <math>M_2=\{aa, ba\}^*</math>. | : (2) <math>M_2=\{aa, ba\}^*</math>. | ||
Które z tych monoidów są wolne? W rozwiązaniu wykorzystaj twierdzenie 2.3 z wykładu 1 (patrz [[Języki, automaty i obliczenia/Wykład 1: Słowa, katenacja - elementy teorii półgrup, półgrupy i monoidy wolne# | Które z tych monoidów są wolne? W rozwiązaniu wykorzystaj twierdzenie 2.3 z wykładu 1 (patrz [[Języki, automaty i obliczenia/Wykład 1: Słowa, katenacja - elementy teorii półgrup, półgrupy i monoidy wolne#zainteresowani_2|twierdzenie 2.3.]]) | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie punktu 1</span><div class="mw-collapsible-content" style="display:none"> | <div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie punktu 1</span><div class="mw-collapsible-content" style="display:none"> | ||
Niech <math>S=M_1 \backslash \{1\}</math>. Po pierwsze, zauważmy, że <math>\{ab,ba,a\} \subset S \backslash S^2</math>. Weźmy element <math>aba \in S</math>. Ma on dwa rozkłady na elementy zbioru <math>S \backslash S^2</math>, mianowicie: <math>aba=a \cdot ba = ab \cdot a</math>, zatem monoid <math>M_1</math> nie jest wolny. | Niech <math>S=M_1 \backslash \{1\}</math>. Po pierwsze, zauważmy, że <math>\{ab,ba,a\} \subset S \backslash S^2</math>. Weźmy element <math>aba \in S</math>. Ma on dwa rozkłady na elementy zbioru <math>S \backslash S^2</math>, mianowicie: <math>aba=a \cdot ba = ab \cdot a</math>, zatem monoid <math>M_1</math> nie jest wolny. | ||
</div></div> | </div></div> | ||
}} | |||
<center>ZADANIA DOMOWE</center> | <center>ZADANIA DOMOWE</center> | ||
Linia 245: | Linia 252: | ||
}} | }} | ||
{{ | {{zainteresowani||| | ||
'''Ćwiczenie 18''' | |||
W monoidzie wolnym <math>\{a, b\}^*</math> rozważamy następujące podmonoidy: | W monoidzie wolnym <math>\{a, b\}^*</math> rozważamy następujące podmonoidy: | ||
Linia 253: | Linia 262: | ||
: (2) <math>M_4=\{ab^2, ab^2a, aba, ba\}^*</math>. | : (2) <math>M_4=\{ab^2, ab^2a, aba, ba\}^*</math>. | ||
Które z tych monoidów są wolne? W rozwiązaniu wykorzystaj twierdzenie 2.3 z wykładu 1 (patrz [[Języki, automaty i obliczenia/Wykład 1: Słowa, katenacja - elementy teorii półgrup, półgrupy i monoidy wolne# | Które z tych monoidów są wolne? W rozwiązaniu wykorzystaj twierdzenie 2.3 z wykładu 1 (patrz [[Języki, automaty i obliczenia/Wykład 1: Słowa, katenacja - elementy teorii półgrup, półgrupy i monoidy wolne#zainteresowani_2|twierdzenie 2.3.]])}} |
Wersja z 15:19, 1 wrz 2006
Ćwiczenia 1
Ćwiczenie 1
Pokaż, że jeśli w zbiorze Parser nie mógł rozpoznać (nieznana funkcja „\mathds”): {\displaystyle \mathds{Z}} określimy działanie
Ćwiczenie 2
Udowodnij, że w monoidzie istnieje dokładnie jeden element neutralny.
Ćwiczenie 4
Niech będzie homomorfizmem półgrup. Pokaż, że jest kongruencją.
Ćwiczenie 5
Skonstruuj odwzorowanie Parser nie mógł rozpoznać (nieznana funkcja „\mathds”): {\displaystyle h: \mathds{Z}_{mod\ 4} \rightarrow \mathds{Z}_{mod\ 2}} tak, aby było homomorfizmem monoidu Parser nie mógł rozpoznać (nieznana funkcja „\mathds”): {\displaystyle (\mathds{Z}_{mod\ 4}, \cdot, 1)} w monoid Parser nie mógł rozpoznać (nieznana funkcja „\mathds”): {\displaystyle (\mathds{Z}_{mod\ 2}, \cdot, 1)} .
Ćwiczenie 6
jest homomorfizmem monoidu na wtw gdy
( Z faktów, że jest homomorfizmem półgrup i suriekcją należy wywnioskować, że jest elementem neutralnym w
).
Ćwiczenie 7
Niech będzie dowolną półgrupą, a dowolnym podzbiorem . Udowodnij, że relacja taka, że
Ćwiczenie 11
Sprawdź, które z poniższych struktur są półgrupami, które monoidami, a które ani półgrupami, ani monoidami. W przypadku monoidów wskaż element neutralny.
- (1) Parser nie mógł rozpoznać (nieznana funkcja „\mathds”): {\displaystyle (\mathds{Z}, +)} ,
- (2) Parser nie mógł rozpoznać (nieznana funkcja „\mathds”): {\displaystyle (\mathds{Z}, \cdot)} ,
- (3) Parser nie mógł rozpoznać (nieznana funkcja „\mathds”): {\displaystyle (\mathds{R}, +)} ,
- (4) Parser nie mógł rozpoznać (nieznana funkcja „\mathds”): {\displaystyle (\mathds{R}, \cdot)} ,
- (5) Parser nie mógł rozpoznać (nieznana funkcja „\mathds”): {\displaystyle (\mathds{Z}_{mod\;5}, +)} ,
- (6) Parser nie mógł rozpoznać (nieznana funkcja „\mathds”): {\displaystyle (\mathds{Z}_{mod\;6}, \cdot)} ,
- (7) ,
- (8) ,
- (9) Parser nie mógł rozpoznać (nieznana funkcja „\mathds”): {\displaystyle (M_n(\mathds{R}), +)} , gdzie Parser nie mógł rozpoznać (nieznana funkcja „\mathds”): {\displaystyle M_n(\mathds{R})} jest rodziną macierzy o wymiarze o elementach rzeczywistych,
- (10) Parser nie mógł rozpoznać (nieznana funkcja „\mathds”): {\displaystyle (M_n(\mathds{R}), \cdot)} , gdzie Parser nie mógł rozpoznać (nieznana funkcja „\mathds”): {\displaystyle M_n(\mathds{R})} jest zdefiniowane jak powyżej,
- (11) Parser nie mógł rozpoznać (nieznana funkcja „\mathds”): {\displaystyle (n\mathds{Z}, +)} , gdzie Parser nie mógł rozpoznać (nieznana funkcja „\mathds”): {\displaystyle n\mathds{Z}=\{mn:\ m \in \mathds{Z}\}} jest zbiorem liczb całkowitych podzielnych przez Parser nie mógł rozpoznać (nieznana funkcja „\mathds”): {\displaystyle n \in \mathds{N}} ,
- (12) zbiór wszystkich drzew binarnych wraz z działaniem , zdefiniowanym w następujący sposób:
RYSUNEK NR 1 (plik JA-lekcja1-c-rys1.bmp)
(czyli działanie na drzewach i polega na dodaniu jednego wierzchołka, który jest nowym korzeniem, a jego lewym i prawym dzieckiem są odpowiednio drzewa i ).
Ćwiczenie 12
Które z półgrup i monoidów z zadania 1.11 są przemienne?
Ćwiczenie 13
Niech i będą półgrupami. Sprawdź, czy półgrupami są także:
- (1) , gdzie ,
- (2) , gdzie i .
Ćwiczenie 14
Podaj przykłady:
- (1) jednoelementowego monoidu,
- (2) jednoelementowej półgrupy,
- (3) monoidów o 3, 5 i 11 elementach,
- (4) nieskończonej przeliczalnej półgrupy,
- (5) nieskończonej nieprzeliczalnej półgrupy.
Ćwiczenie 15
Podaj przykład półgrupy i kongruencji taki, że ale Parser nie mógł rozpoznać (nieznana funkcja „\slash”): {\displaystyle S \slash \rho} jest skończona.
Ćwiczenie 16
Rozważmy monoid Parser nie mógł rozpoznać (nieznana funkcja „\mathds”): {\displaystyle S=(\mathds{Z}, +)}
i ustalmy Parser nie mógł rozpoznać (nieznana funkcja „\mathds”): {\displaystyle k \in \mathds{N}}
. Znajdź monoidy ilorazowe Parser nie mógł rozpoznać (nieznana funkcja „\slash”): {\displaystyle S \slash \rho}
, gdzie relacja zdefiniowana jest następująco (najpierw sprawdź, czy jest kongruencją!):
wtw .
Ćwiczenie 17
Niech będzie dowolną półgrupą, a dowolnym podzbiorem . Udowodnij, że:
- (1) relacja taka, że
jest lewą kongruencją,
- (2) relacja taka, że
jest kongruencją.
Ćwiczenie 18
W monoidzie wolnym rozważamy następujące podmonoidy:
- (1) ,
- (2) .