ED-4.2-m10-1.0-Slajd24: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
ALesniewska (dyskusja | edycje)
Nie podano opisu zmian
 
ALesniewska (dyskusja | edycje)
Nie podano opisu zmian
 
Linia 4: Linia 4:




W obu podejściach, aglomeracyjnym i podziałowym, liczba klastrów jest ustalona z góry przez użytkownika i stanowi warunek stopu procesu grupowania. W praktyce, hierarchiczne algorytmy podziałowe nie są stosowane ze względu na problem podziału klastra. Problem ten można sformułować następująco. Dany jest klaster obiektów. w jaki sposób podzielić klaster na dwa klastry tak, aby optymalizować przyjętą funkcję kryterialną? Pamiętajmy, że w każdym kroku algorytmu podziałowego mamy M klastrów. Który z podziałów jest najlepszy?
W obu podejściach, aglomeracyjnym i podziałowym, liczba klastrów jest ustalona z góry przez użytkownika i stanowi warunek stopu procesu grupowania. W praktyce, hierarchiczne algorytmy podziałowe nie są stosowane ze względu na problem podziału klastra. Problem ten można sformułować następująco. Dany jest klaster obiektów. w jaki sposób podzielić klaster na dwa klastry tak, aby optymalizować przyjętą funkcję kryterialną? Pamiętajmy, że w każdym kroku algorytmu podziałowego mamy M klastrów. Który z podziałów jest najlepszy? Stąd, najpopularniejszą i, de facto, jedyną grupą hierarchicznych algorytmów stosowaną w praktyce są algorytmy aglomeracyjne. W przypadku algorytmów aglomeracyjnych podstawowym problemem jest problem łączenia klastrów. Które klastry połączyć i utworzyć większy klaster? Odpowiedź wydaje się, na pierwszy rzut oka, oczywista – należy połączyć dwa „najbliższe” klastry. Co to znaczy „najbliższe”? W jaki sposób zdefiniować odległość pomiędzy klastrami?  
 
Stąd, najpopularniejszą i, de facto, jedyną grupą hierarchicznych algorytmów stosowaną w praktyce są algorytmy aglomeracyjne. W przypadku algorytmów aglomeracyjnych podstawowym problemem jest problem łączenia klastrów. Które klastry połączyć i utworzyć większy klaster? Odpowiedź wydaje się, na pierwszy rzut oka, oczywista – należy połączyć dwa „najbliższe” klastry. Co to znaczy „najbliższe”? W jaki sposób zdefiniować odległość pomiędzy klastrami?  




[[ED-4.2-m10-1.0-Slajd23 | << Poprzedni slajd]] | [[ED-4.2-m10-1.0-toc|Spis treści ]] | [[ED-4.2-m10-1.0-Slajd25 | Następny slajd >>]]
[[ED-4.2-m10-1.0-Slajd23 | << Poprzedni slajd]] | [[ED-4.2-m10-1.0-toc|Spis treści ]] | [[ED-4.2-m10-1.0-Slajd25 | Następny slajd >>]]

Aktualna wersja na dzień 12:31, 31 sie 2006

Miary odległości (1)

Miary odległości (1)


W obu podejściach, aglomeracyjnym i podziałowym, liczba klastrów jest ustalona z góry przez użytkownika i stanowi warunek stopu procesu grupowania. W praktyce, hierarchiczne algorytmy podziałowe nie są stosowane ze względu na problem podziału klastra. Problem ten można sformułować następująco. Dany jest klaster obiektów. w jaki sposób podzielić klaster na dwa klastry tak, aby optymalizować przyjętą funkcję kryterialną? Pamiętajmy, że w każdym kroku algorytmu podziałowego mamy M klastrów. Który z podziałów jest najlepszy? Stąd, najpopularniejszą i, de facto, jedyną grupą hierarchicznych algorytmów stosowaną w praktyce są algorytmy aglomeracyjne. W przypadku algorytmów aglomeracyjnych podstawowym problemem jest problem łączenia klastrów. Które klastry połączyć i utworzyć większy klaster? Odpowiedź wydaje się, na pierwszy rzut oka, oczywista – należy połączyć dwa „najbliższe” klastry. Co to znaczy „najbliższe”? W jaki sposób zdefiniować odległość pomiędzy klastrami?


<< Poprzedni slajd | Spis treści | Następny slajd >>