ED-4.2-m10-1.0-Slajd16: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
ALesniewska (dyskusja | edycje)
Nie podano opisu zmian
 
ALesniewska (dyskusja | edycje)
Nie podano opisu zmian
 
Linia 4: Linia 4:




Zmienną binarną nazywamy asymetryczną, jeżeli obie wartości tej zmiennej posiadają rózne wagi (np. wynik badania EKG). Tradycyjną miarą niepodobieństwa dwóch obiektów i i j, opisanych zmiennymi binarnymi asymetrycznymi, jest stosunek (r + s)/(q+ r + s). Innymi słowy, niepodobieństwo dwóch obiektów i i j, opisanych zmiennymi binarnymi asymetrycznymi, definiujemy jako stosunek liczby zmiennych, dla których oba obiekty posiadają różną wartość (r+s) do liczby wszystkich zmiennych p umniejszonej o liczbę zmiennych t przyjmujących wartość 0 dla obu obiektów. Podobnie jak w przypadku zmiennych binarnych symetrycznych, miarą podobieństwa dwóch obiektów i i j, opisanych zmiennymi binarnymi asymetrycznymi, będzie stosunek q/(q+r+s), tj. stosunek liczby zmiennych, dla których oba obiekty posiadają wartość 1 (q) do liczby wszystkich zmiennych p umniejszonej o liczbę zmiennych t przyjmujących wartość 0 dla obu obiektów.
Zmienną binarną nazywamy asymetryczną, jeżeli obie wartości tej zmiennej posiadają różne wagi (np. wynik badania EKG). Tradycyjną miarą niepodobieństwa dwóch obiektów i i j, opisanych zmiennymi binarnymi asymetrycznymi, jest stosunek (r + s)/(q+ r + s). Innymi słowy, niepodobieństwo dwóch obiektów i i j, opisanych zmiennymi binarnymi asymetrycznymi, definiujemy jako stosunek liczby zmiennych, dla których oba obiekty posiadają różną wartość (r+s) do liczby wszystkich zmiennych p umniejszonej o liczbę zmiennych t przyjmujących wartość 0 dla obu obiektów. Podobnie jak w przypadku zmiennych binarnych symetrycznych, miarą podobieństwa dwóch obiektów i i j, opisanych zmiennymi binarnymi asymetrycznymi, będzie stosunek q/(q+r+s), tj. stosunek liczby zmiennych, dla których oba obiekty posiadają wartość 1 (q) do liczby wszystkich zmiennych p umniejszonej o liczbę zmiennych t przyjmujących wartość 0 dla obu obiektów.




[[ED-4.2-m10-1.0-Slajd15 | << Poprzedni slajd]] | [[ED-4.2-m10-1.0-toc|Spis treści ]] | [[ED-4.2-m10-1.0-Slajd17 | Następny slajd >>]]
[[ED-4.2-m10-1.0-Slajd15 | << Poprzedni slajd]] | [[ED-4.2-m10-1.0-toc|Spis treści ]] | [[ED-4.2-m10-1.0-Slajd17 | Następny slajd >>]]

Aktualna wersja na dzień 12:30, 31 sie 2006

Zmienne binarne (3)

Zmienne binarne (3)


Zmienną binarną nazywamy asymetryczną, jeżeli obie wartości tej zmiennej posiadają różne wagi (np. wynik badania EKG). Tradycyjną miarą niepodobieństwa dwóch obiektów i i j, opisanych zmiennymi binarnymi asymetrycznymi, jest stosunek (r + s)/(q+ r + s). Innymi słowy, niepodobieństwo dwóch obiektów i i j, opisanych zmiennymi binarnymi asymetrycznymi, definiujemy jako stosunek liczby zmiennych, dla których oba obiekty posiadają różną wartość (r+s) do liczby wszystkich zmiennych p umniejszonej o liczbę zmiennych t przyjmujących wartość 0 dla obu obiektów. Podobnie jak w przypadku zmiennych binarnych symetrycznych, miarą podobieństwa dwóch obiektów i i j, opisanych zmiennymi binarnymi asymetrycznymi, będzie stosunek q/(q+r+s), tj. stosunek liczby zmiennych, dla których oba obiekty posiadają wartość 1 (q) do liczby wszystkich zmiennych p umniejszonej o liczbę zmiennych t przyjmujących wartość 0 dla obu obiektów.


<< Poprzedni slajd | Spis treści | Następny slajd >>