ED-4.2-m10-1.0-Slajd16: Różnice pomiędzy wersjami
Nie podano opisu zmian |
Nie podano opisu zmian |
||
Linia 4: | Linia 4: | ||
Zmienną binarną nazywamy asymetryczną, jeżeli obie wartości tej zmiennej posiadają | Zmienną binarną nazywamy asymetryczną, jeżeli obie wartości tej zmiennej posiadają różne wagi (np. wynik badania EKG). Tradycyjną miarą niepodobieństwa dwóch obiektów i i j, opisanych zmiennymi binarnymi asymetrycznymi, jest stosunek (r + s)/(q+ r + s). Innymi słowy, niepodobieństwo dwóch obiektów i i j, opisanych zmiennymi binarnymi asymetrycznymi, definiujemy jako stosunek liczby zmiennych, dla których oba obiekty posiadają różną wartość (r+s) do liczby wszystkich zmiennych p umniejszonej o liczbę zmiennych t przyjmujących wartość 0 dla obu obiektów. Podobnie jak w przypadku zmiennych binarnych symetrycznych, miarą podobieństwa dwóch obiektów i i j, opisanych zmiennymi binarnymi asymetrycznymi, będzie stosunek q/(q+r+s), tj. stosunek liczby zmiennych, dla których oba obiekty posiadają wartość 1 (q) do liczby wszystkich zmiennych p umniejszonej o liczbę zmiennych t przyjmujących wartość 0 dla obu obiektów. | ||
[[ED-4.2-m10-1.0-Slajd15 | << Poprzedni slajd]] | [[ED-4.2-m10-1.0-toc|Spis treści ]] | [[ED-4.2-m10-1.0-Slajd17 | Następny slajd >>]] | [[ED-4.2-m10-1.0-Slajd15 | << Poprzedni slajd]] | [[ED-4.2-m10-1.0-toc|Spis treści ]] | [[ED-4.2-m10-1.0-Slajd17 | Następny slajd >>]] |
Aktualna wersja na dzień 12:30, 31 sie 2006
Zmienne binarne (3)
Zmienną binarną nazywamy asymetryczną, jeżeli obie wartości tej zmiennej posiadają różne wagi (np. wynik badania EKG). Tradycyjną miarą niepodobieństwa dwóch obiektów i i j, opisanych zmiennymi binarnymi asymetrycznymi, jest stosunek (r + s)/(q+ r + s). Innymi słowy, niepodobieństwo dwóch obiektów i i j, opisanych zmiennymi binarnymi asymetrycznymi, definiujemy jako stosunek liczby zmiennych, dla których oba obiekty posiadają różną wartość (r+s) do liczby wszystkich zmiennych p umniejszonej o liczbę zmiennych t przyjmujących wartość 0 dla obu obiektów. Podobnie jak w przypadku zmiennych binarnych symetrycznych, miarą podobieństwa dwóch obiektów i i j, opisanych zmiennymi binarnymi asymetrycznymi, będzie stosunek q/(q+r+s), tj. stosunek liczby zmiennych, dla których oba obiekty posiadają wartość 1 (q) do liczby wszystkich zmiennych p umniejszonej o liczbę zmiennych t przyjmujących wartość 0 dla obu obiektów.