PEE Moduł 7: Różnice pomiędzy wersjami
Nie podano opisu zmian |
Nie podano opisu zmian |
||
Linia 14: | Linia 14: | ||
*'''stan nieustalony''', w którym przebiegi czasowe odpowiedzi mają inny charakter niż wymuszenie (na przykład w odpowiedzi na wymuszenie stałe odpowiedź obwodu jest wykładniczo malejąca czy oscylacyjna). | *'''stan nieustalony''', w którym przebiegi czasowe odpowiedzi mają inny charakter niż wymuszenie (na przykład w odpowiedzi na wymuszenie stałe odpowiedź obwodu jest wykładniczo malejąca czy oscylacyjna). | ||
Stan nieustalony w obwodzie RLC powstaje jako nałożenie się stanu przejściowego (zwykle zanikającego) i stanu ustalonego przy zmianie stanu obwodu spowodowanego przełączeniem. Może on wystąpić w wyniku przełączeń w samym obwodzie pasywnym (zmiana wartości elementów, zwarcie elementu, wyłączenie elementu) lub w wyniku zmiany sygnałów wymuszających (parametrów źródeł napięciowych i prądowych, w tym także załączeniem lub wyłączeniem źródła). Dowolną zmianę w obwodzie nazywać będziemy komutacją. Zakładać będziemy, że czas trwania komutacji jest równy zeru, co znaczy że wszystkie przełączenia odbywają się bezzwłocznie. | Stan nieustalony w obwodzie RLC powstaje jako nałożenie się stanu przejściowego (zwykle zanikającego) i stanu ustalonego przy zmianie stanu obwodu spowodowanego przełączeniem. Może on wystąpić w wyniku przełączeń w samym obwodzie pasywnym (zmiana wartości elementów, zwarcie elementu, wyłączenie elementu) lub w wyniku zmiany sygnałów wymuszających (parametrów źródeł napięciowych i prądowych, w tym także załączeniem lub wyłączeniem źródła). Dowolną zmianę w obwodzie nazywać będziemy '''komutacją'''. Zakładać będziemy, że czas trwania komutacji jest równy zeru, co znaczy że wszystkie przełączenia odbywają się bezzwłocznie. | ||
W obwodach elektrycznych proces komutacji modeluje się zwykle przy pomocy wyłączników i przełączników wskazujących na rodzaj przełączenia. Chwilę czasową poprzedzającą bezpośrednio komutację oznaczać będziemy w ogólności przez (w szczególności przez ), natomiast chwilę bezpośrednio następującą po komutacji przez (w szczególności przez ), gdzie jest chwilą przełączenia (komutacji). | W obwodach elektrycznych proces komutacji modeluje się zwykle przy pomocy wyłączników i przełączników wskazujących na rodzaj przełączenia. Chwilę czasową poprzedzającą bezpośrednio komutację oznaczać będziemy w ogólności przez (w szczególności przez ), natomiast chwilę bezpośrednio następującą po komutacji przez (w szczególności przez ), gdzie jest chwilą przełączenia (komutacji). | ||
Linia 34: | Linia 34: | ||
<math>\Sigma_iq_i(0^-)=\ | <math>\Sigma_iq_i(0^-)=\Sigma_iq_i(0^+)</math> | ||
Jeśli w wyniku przełączenia nie powstają oczka złożone z samych kondensatorów oraz idealnych źródeł napięcia to biorąc pod uwagę zależność <math>q_C= | Jeśli w wyniku przełączenia nie powstają oczka złożone z samych kondensatorów oraz idealnych źródeł napięcia to biorąc pod uwagę zależność <math>q_C=Cu_C</math> prawo komutacji dla kondensatorów można zapisać w uproszczonej postaci uzależnionej od napięć tych kondensatorów | ||
Linia 62: | Linia 62: | ||
Należy zaznaczyć, że prawa komutacji dotyczą wyłącznie prądu (strumienia) cewki i napięcia (ładunku) kondensatora. Inne wielkości związane z tymi elementami (prąd kondensatora, napięcie cewki) jak również prąd i napięcie na rezystorze nie są związane bezpośrednio zależnościami energetycznymi i mogą zmieniać się w sposób skokowy podczas komutacji. Wartości jakie przybierają tuż po komutacji wynikają bądź z praw Kirchhoffa bądź z prawa Ohma. | Należy zaznaczyć, że prawa komutacji dotyczą wyłącznie prądu (strumienia) cewki i napięcia (ładunku) kondensatora. Inne wielkości związane z tymi elementami (prąd kondensatora, napięcie cewki) jak również prąd i napięcie na rezystorze nie są związane bezpośrednio zależnościami energetycznymi i mogą zmieniać się w sposób skokowy podczas komutacji. Wartości jakie przybierają tuż po komutacji wynikają bądź z praw Kirchhoffa bądź z prawa Ohma. | ||
|} | |||
Przy założeniu, że chwilę komutacji uważać będziemy za chwilę początkową analizy obwodu w stanie nieustalonym <math>(t_0=0)</math> istotnym problemem w analizie obwodu jest wyznaczenie warunków początkowych procesu, czyli wartości napięć na kondensatorach i prądów cewek w chwili przełączenia (u nas <math>i_L(0^-)</math> oraz <math>u_C(0^-)</math> ). Zwykle przyjmuje się, że przełączenie następuje ze stanu ustalonego obwodu. Warunki początkowe wynikają wówczas z wartości ustalonych tych wielkości w chwili tuż przed przełączeniem <math>(t_0=0^-)</math> . Warunki początkowe mogą być przy tym zerowe, jeśli prądy wszystkich cewek i napięcia wszystkich kondensatorów w chwili przełączenia miały wartości zerowe. Znajomość warunków początkowych w obwodzie jest niezbędna przy wyznaczaniu rozwiązania obwodu w stanie nieustalonym. | <hr width="100%"> | ||
{| border="0" cellpadding="4" width="100%" | |||
|valign="top" width="500px"|[[Grafika:PEE_M7_Slajd3.png]] | |||
|valign="top"|Przy założeniu, że chwilę komutacji uważać będziemy za chwilę początkową analizy obwodu w stanie nieustalonym <math>(t_0=0)</math> istotnym problemem w analizie obwodu jest wyznaczenie warunków początkowych procesu, czyli wartości napięć na kondensatorach i prądów cewek w chwili przełączenia (u nas <math>i_L(0^-)</math> oraz <math>u_C(0^-)</math> ). Zwykle przyjmuje się, że przełączenie następuje ze stanu ustalonego obwodu. Warunki początkowe wynikają wówczas z wartości ustalonych tych wielkości w chwili tuż przed przełączeniem <math>(t_0=0^-)</math> . Warunki początkowe mogą być przy tym zerowe, jeśli prądy wszystkich cewek i napięcia wszystkich kondensatorów w chwili przełączenia miały wartości zerowe. Znajomość warunków początkowych w obwodzie jest niezbędna przy wyznaczaniu rozwiązania obwodu w stanie nieustalonym. | |||
Wyznaczenie stanu początkowego napięcia kondensatora i prądu cewki w obwodzie sprowadza się do | Wyznaczenie stanu początkowego napięcia kondensatora i prądu cewki w obwodzie sprowadza się do |
Wersja z 13:18, 24 sie 2006
![]() |
Metoda równań różniczkowych w rozwiązaniu stanu nieustalonego w obwodach elektrycznych |
![]() |
Przykład
Napisać układ równań stanu dla obwodu elektrycznego przedstawionego na rysunku |
Stałą czasową obwodu RL można wyznaczyć na podstawie zarejestrowanego przebiegu nieustalonego bez znajomości wartości rezystancji i indukcyjności. Zauważmy, że dla prąd cewki przyjmuje wartość
|
Łatwo wykazać, że po upływie 3 stałych czasowych ( ) napięcie uzyskuje prawie 95% swojej wartości ustalonej a po 5 stałych czasowych aż 99,3%. Oznacza to, że praktycznie po stałych czasowych stan nieustalony w obwodzie zanika przechodząc w stan ustalony.
Stałą czasową można wyznaczyć bezpośrednio na podstawie zarejestrowanego przebiegu nieustalonego bez znajomości wartości rezystancji i pojemności, podobnie jak to miało miejsce w przypadku obwodu RL. |
Zadania sprawdzające
Zadanie 7.1 Wyznaczyć warunki początkowe w obwodzie przedstawionym na rysunku. Parametry elementów obwodu są następujące: Rozwiązanie Warunki początkowe dotyczą stanu ustalonego przed przełączeniem, w którym w obwodzie działają oba źródła wymuszające. Stosując metodę symboliczną analizy obwodu otrzymujemy
|
![]() |
Równania obwodu w stanie ustalonym
Warunki początkowe:
|
Zadanie 7.2
Napisać równanie stanu dla obwodu o strukturze przedstawionej na rysunku Rozwiązanie Z praw Kirchhoffa napisanych dla obwodu z rysunku wynika
Rozwiązanie Warunki początkowe w obwodzie wynikają ze stanu ustalonego obwodu przed przełączeniem, który wobec wymuszenia stałego ma postać uproszczoną przedstawioną na rysunku Schemat obwodu w stanie ustalonym przed przełączeniem dla wymuszenia stałego
Schemat obwodu w stanie ustalonym po przełączeniu
Schemat obwodu w stanie przejściowym po przełączeniu
Postać ostateczna rozwiązania:
|