PEE Moduł 5: Różnice pomiędzy wersjami
Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Nie podano opisu zmian |
Nie podano opisu zmian |
||
Linia 130: | Linia 130: | ||
{| border="0" cellpadding="4" width="100%" | {| border="0" cellpadding="4" width="100%" | ||
|valign="top" width="500px"|[[Grafika:PEE_M5_Slajd10.png]] | |valign="top" width="500px"|[[Grafika:PEE_M5_Slajd10.png]] | ||
|valign="top"|W przypadku cewek jednoimiennych | |valign="top"|W przypadku cewek jednoimiennych eliminacja sprzężenia magnetycznego prowadzi do obwodu zastępczego przedstawionego na slajdzie obok. W gałęziach zawierających cewki pojawiła się impedancja wzajemna ze znakiem plus a w gałęzi wspólnej impedancja wzajemna ze znakiem minus. | ||
W gałęziach zawierających cewki pojawiła się impedancja wzajemna ze znakiem plus a w gałęzi wspólnej impedancja wzajemna ze znakiem minus. Łatwo udowodnić, że przy takim sposobie eliminacji sprzężeń napięcia na zaciskach zewnętrznych 1, 2 i 3 w obu obwodach (oryginalnym i po eliminacji sprzężenia) przy tych samych prądach zewnętrznych równają się sobie (co jest warunkiem równoważności). | W przypadku cewek różnoimiennych eliminacja sprzężenia magnetycznego prowadzi do obwodu zastępczego przedstawionego na slajdzie obok. | ||
W gałęziach zawierających cewki pojawiła się impedancja wzajemna ze znakiem plus a w gałęzi wspólnej impedancja wzajemna ze znakiem minus. | |||
Łatwo udowodnić, że przy takim sposobie eliminacji sprzężeń napięcia na zaciskach zewnętrznych 1, 2 i 3 w obu obwodach (oryginalnym i po eliminacji sprzężenia) przy tych samych prądach zewnętrznych równają się sobie (co jest warunkiem równoważności). | |||
Przy eliminacji sprzężeń magnetycznych przyjęty zwrot prądów nie ma żadnego wpływu na końcową postać obwodu bez sprzężeń. Ma na nią wpływ jedynie usytuowanie początków uzwojeń cewek względem wspólnego węzła, czyli jednoimienność lub różnoimienność cewek sprzężonych magnetycznie. | Przy eliminacji sprzężeń magnetycznych przyjęty zwrot prądów nie ma żadnego wpływu na końcową postać obwodu bez sprzężeń. Ma na nią wpływ jedynie usytuowanie początków uzwojeń cewek względem wspólnego węzła, czyli jednoimienność lub różnoimienność cewek sprzężonych magnetycznie. | ||
Linia 140: | Linia 143: | ||
Należy podkreślić, że przy wielu cewkach sprzężonych ze sobą, eliminacja każdego sprzężenia między dwoma wybranymi cewkami może zachodzić niezależnie od pozostałych sprzężeń, co znakomicie ułatwia przeprowadzenie procesu eliminacji sprzężeń. | Należy podkreślić, że przy wielu cewkach sprzężonych ze sobą, eliminacja każdego sprzężenia między dwoma wybranymi cewkami może zachodzić niezależnie od pozostałych sprzężeń, co znakomicie ułatwia przeprowadzenie procesu eliminacji sprzężeń. | ||
|} | |} | ||
Wersja z 12:42, 24 sie 2006
![]() |
Wykład 5. Obwody ze sprzężeniami magnetycznymi |
![]() |
PRZYKŁAD
Wyznaczyć rozpływy prądów w obwodzie przedstawionym na rysunku Przyjąć następujące wartości parametrów elementów obwodu: oraz . |
![]() |
Rozwiązanie
Postać obwodu po eliminacji sprzężenia magnetycznego przedstawiono na rysunku |
![]() |
Wielkości symboliczne charakteryzujące elementy obwodu:
Impedancja zastępcza obwodu wobec
|
![]() |
PRZYKŁAD
Wyznaczyć rozwiązanie obwodu z rysunku zawierającego transformator idealny o przekładni zwojowej równej . Przyjąć następujące wartości parametrów obwodu: |
![]() |
Rozwiązanie
Wielkości symboliczne charakteryzujące elementy obwodu:
|
![]() |
Po wstawieniu wartości liczbowych otrzymuje się
Po uproszczeniu tego układu równań otrzymuje się
Stąd
Łatwo sprawdzić, że stosunek prądu do prądu podczas gdy
|