PEE Moduł 2: Różnice pomiędzy wersjami
Nie podano opisu zmian |
Nie podano opisu zmian |
||
Linia 134: | Linia 134: | ||
|valign="top" width="500px"|[[Grafika:PEE_M2_Slajd8.png]] | |valign="top" width="500px"|[[Grafika:PEE_M2_Slajd8.png]] | ||
|valign="top"|Po wykonaniu operacji różniczkowania i całkowania równanie powyższe przyjmuje postać | |valign="top"|Po wykonaniu operacji różniczkowania i całkowania równanie powyższe przyjmuje postać | ||
<math>\frac{U_m}{\sqrt 2}e^j^ \psi=R\frac{I_m}{\sqrt 2}e^j^{\psi_i}+j\omega L\frac{I_m}{\sqrt 2}e^j^{\psi_i}+\frac{1}{j\omega C}\frac{I_m}{\sqrt 2}e^j^{\psi_i}</math> | <math>\frac{U_m}{\sqrt 2}e^j^ \psi=R\frac{I_m}{\sqrt 2}e^j^{\psi_i}+j\omega L\frac{I_m}{\sqrt 2}e^j^{\psi_i}+\frac{1}{j\omega C}\frac{I_m}{\sqrt 2}e^j^{\psi_i}</math> | ||
Oznaczmy przez <math>u=\frac{U_m}{\sqrt 2}e^j^ | |||
Oznaczmy przez <math>u=\frac{U_m}{\sqrt 2}e^j^\psi</math> wartość skuteczną zespoloną napięcia, a przez <math>I=\frac{I_m}{\sqrt 2}e^j^\psi_i</math> wartość skuteczną zespoloną prądu. Wtedy równanie można zapisać w następującej postaci obowiązującej dla wartości skutecznych zespolonych | |||
Wersja z 08:22, 24 sie 2006
![]() |
Wykład 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym |
![]() |
Przedstawione powyżej zasady konstruowania przesunięć kątowych między wektorami prądu i napięcia umożliwiają podanie ogólnych zasad postępowania przy konstruowaniu wykresu wektorowego dla dowolnego obwodu RLC.
|
![]() |
Przykład 2.1
Narysować wykres wektorowy prądów i napięć dla obwodu RLC o strukturze przedstawionej na rysunku |
![]() |
Rozwiązanie
Na rysunku obok przedstawiono wykres wektorowy prądów i napięć w obwodzie RLC z z porzedniego slajdu Sporządzanie wykresu rozpoczyna się od prądu I3 dobudowując kolejno wektory napięć i prądów gałęzi przesuwając się w stronę źródła: . Jak widać obwód ma charakter pojemnościowy, gdyż napięcie wypadkowe E opóźnia się względem odpowiadającego mu prądu |
![]() |
Zadania sprawdzające
Zadanie 2.1 Wyznaczyć rozpływy prądów w obwodzie z rysunku w stanie ustalonym. Przyjąć następujące wartości parametrów: |
![]() |
Rozwiązanie
Wartości symboliczne elementów obwodu:
Impedancje obwodu RLC:
|
![]() |
Prądy i napięcie w obwodzie:
|
![]() |
Wartości chwilowe prądów i napięcia
|
Zadanie 2.2
Wyznaczyć prądy i napięcia w obwodzie przedstawionym na rysunku. Przyjąć następujące wartości elementów:
Wartości symboliczne elementów obwodu:
Impedancje obwodu:
Prądy i napięcia w obwodzie:
Zadanie 2.3 Sporządzić wykres wektorowy prądów i napięć w obwodzie przedstawionym na rysUNKU
Rozwiązanie Wykres rozpoczyna się od prądu , dodając kolejno napięcia na i , napięcie , prąd , prąd oraz napięcie . Pełny wykres wektorowy przedstawiony jest na rysunku.
Kąt fazowy przesunięcia prądu względem napięcia zasilającego jest równy Biorąc pod uwagę, że napięcie wyprzedza prąd obwód ma charakter indukcyjny. |