PEE Moduł 2: Różnice pomiędzy wersjami
Nie podano opisu zmian |
Nie podano opisu zmian |
||
Linia 60: | Linia 60: | ||
{| border="0" cellpadding="4" width="100%" | {| border="0" cellpadding="4" width="100%" | ||
|valign="top" width="500px"|[[Grafika:PEE_M2_Slajd4.png]] | |valign="top" width="500px"|[[Grafika:PEE_M2_Slajd4.png]] | ||
|valign="top"|'''Metoda symboliczna liczb zespolonych analizy obwodów RLC''' | |valign="top"|'''Metoda symboliczna liczb zespolonych analizy obwodów RLC w stanie ustalonym''' | ||
Analiza obwodów zawierających elementy RLC przy wymuszeniu sinusoidalnym napotyka na pewne trudności związane z wystąpieniem w opisie cewki i kondensatora równań różniczkowych. Trudności te łatwo jest pokonać w '''stanie ustalonym'''. Stanem ustalonym obwodu nazywać będziemy taki stan, w którym charakter odpowiedzi jest identyczny jak charakter wymuszenia, to znaczy odpowiedzią na wymuszenie sinusoidalne jest odpowiedź również sinusoidalna o tej samej częstotliwości choć o różnej amplitudzie i fazie początkowej. Dla stanu ustalonego obwodu wprowadzona zostanie '''metoda liczb zespolonych, zwana również metodą symboliczną,''' sprowadzająca wszystkie operacje różniczkowe i całkowe do działań algebraicznych na liczbach zespolonych. | Analiza obwodów zawierających elementy RLC przy wymuszeniu sinusoidalnym napotyka na pewne trudności związane z wystąpieniem w opisie cewki i kondensatora równań różniczkowych. Trudności te łatwo jest pokonać w '''stanie ustalonym'''. Stanem ustalonym obwodu nazywać będziemy taki stan, w którym charakter odpowiedzi jest identyczny jak charakter wymuszenia, to znaczy odpowiedzią na wymuszenie sinusoidalne jest odpowiedź również sinusoidalna o tej samej częstotliwości choć o różnej amplitudzie i fazie początkowej. | ||
Dla stanu ustalonego obwodu wprowadzona zostanie '''metoda liczb zespolonych, zwana również metodą symboliczną,''' sprowadzająca wszystkie operacje różniczkowe i całkowe do działań algebraicznych na liczbach zespolonych. | |||
|} | |} | ||
Linia 70: | Linia 72: | ||
{| border="0" cellpadding="4" width="100%" | {| border="0" cellpadding="4" width="100%" | ||
|valign="top" width="500px"|[[Grafika:PEE_M2_Slajd5.png]] | |valign="top" width="500px"|[[Grafika:PEE_M2_Slajd5.png]] | ||
|valign="top"| | |valign="top"|Dla wprowadzenia tej metody przyjmijmy, że rozważany jest obwód szeregowy RLC zasilany ze źródła napięcia sinusoidalnego <math>u(t)=U_msin(\omega t+\psi)</math> | ||
Z prawa napięciowego Kirchhoffa wynika następujący związek między napięciami elementów tego obwodu | Z prawa napięciowego Kirchhoffa wynika następujący związek między napięciami elementów tego obwodu | ||
Linia 82: | Linia 84: | ||
<math>u_R=Ri</math> | <math>u_R=Ri</math> | ||
<math>u_c=1 | <math>u_c=\frac{1}{C} \int idt</math> | ||
<math>u_L=L \left \frac{di}{dt} \right</math> | <math>u_L=L \left \frac{di}{dt} \right</math> |
Wersja z 08:16, 24 sie 2006
![]() |
Wykład 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym |
![]() |
Przedstawione powyżej zasady konstruowania przesunięć kątowych między wektorami prądu i napięcia umożliwiają podanie ogólnych zasad postępowania przy konstruowaniu wykresu wektorowego dla dowolnego obwodu RLC.
|
![]() |
Przykład 2.1
Narysować wykres wektorowy prądów i napięć dla obwodu RLC o strukturze przedstawionej na rysunku |
![]() |
Rozwiązanie
Na rysunku obok przedstawiono wykres wektorowy prądów i napięć w obwodzie RLC z z porzedniego slajdu Sporządzanie wykresu rozpoczyna się od prądu I3 dobudowując kolejno wektory napięć i prądów gałęzi przesuwając się w stronę źródła: . Jak widać obwód ma charakter pojemnościowy, gdyż napięcie wypadkowe E opóźnia się względem odpowiadającego mu prądu |
![]() |
Zadania sprawdzające
Zadanie 2.1 Wyznaczyć rozpływy prądów w obwodzie z rysunku w stanie ustalonym. Przyjąć następujące wartości parametrów: |
![]() |
Rozwiązanie
Wartości symboliczne elementów obwodu:
Impedancje obwodu RLC:
|
![]() |
Prądy i napięcie w obwodzie:
|
![]() |
Wartości chwilowe prądów i napięcia
|
Zadanie 2.2
Wyznaczyć prądy i napięcia w obwodzie przedstawionym na rysunku. Przyjąć następujące wartości elementów:
Wartości symboliczne elementów obwodu:
Impedancje obwodu:
Prądy i napięcia w obwodzie:
Zadanie 2.3 Sporządzić wykres wektorowy prądów i napięć w obwodzie przedstawionym na rysUNKU
Rozwiązanie Wykres rozpoczyna się od prądu , dodając kolejno napięcia na i , napięcie , prąd , prąd oraz napięcie . Pełny wykres wektorowy przedstawiony jest na rysunku.
Kąt fazowy przesunięcia prądu względem napięcia zasilającego jest równy Biorąc pod uwagę, że napięcie wyprzedza prąd obwód ma charakter indukcyjny. |