Logika i teoria mnogości: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Zaionc (dyskusja | edycje)
Diks (dyskusja | edycje)
Linia 15: Linia 15:


=== Zawartość ===
=== Zawartość ===
** Rachunek zdań i rachunek predykatów.  
* Rachunek zdań i rachunek predykatów.  
* Aksjomatyka teorii mnogości, aksjomaty sumy, ekstensjonalności, przecięcia, pary.  
* Aksjomatyka teorii mnogości, aksjomaty sumy, ekstensjonalności, przecięcia, pary.  
* Iloczyn Kartezjański, relacje, relacja równoważności, rozkłady zbiorów.  
* Iloczyn Kartezjański, relacje, relacja równoważności, rozkłady zbiorów.  

Wersja z 16:37, 13 cze 2006

Forma zajęć

Wykład (30 godzin) + ćwiczenia (30 godzin)

Opis

Zapoznanie się z podstawowymi pojęciami i narzędziami matematyki. Wprowadzenie fundamentalnych obiektów matematycznych i opis ich własności.

Sylabus

Autorzy

  • Marek Zaionc
  • Jakub Kozik
  • Marcin Kozik

Wymagania wstępne

  • Brak

Zawartość

  • Rachunek zdań i rachunek predykatów.
  • Aksjomatyka teorii mnogości, aksjomaty sumy, ekstensjonalności, przecięcia, pary.
  • Iloczyn Kartezjański, relacje, relacja równoważności, rozkłady zbiorów.
  • Konstrukcja von Neumanna liczb naturalnych:
    • twierdzenie o indukcji,
    • własności liczb,
    • definiowanie przez indukcje,
    • zasada minimum,
    • zasada maksimum.
  • Konstrukcja i działania na liczbach całkowitych
  • Konstrukcja i działania na liczbach wymiernych.
  • Konstrukcja Cantora liczb rzeczywistych:
    • działania i porządek.
  • Funkcje, twierdzenie o faktoryzacji:
    • Obrazy i przeciwobrazy zbiorów.
  • Teoria mocy:
    • Zbiory przeliczalne i ich własności.
    • Zbióry liczb całkowitych i wymiernych są przeliczalny.
    • Zbiór liczb rzeczywistych jest nieprzeliczalny.
    • Zbiory {0,1}N i NN nie są przeliczalne. Zbiór 2NR
    • Twierdzenie Knastera - Tarskiego (dla zbiorów)
    • Lemat Banacha,
    • Twierdzenie Cantora-Bernsteina, (warunki równoważne),
    • Twierdzenie Cantora.
    • Zbiory mocy kontinuum.
  • Zbiory uporządkowane.
    • Lemat Kuratowskiego Zorna.
    • Przykłady dowodów przy pomocy lematu Kuratowskiego Zorna.
  • Zbiory liniowo uporządkowane.
    • Pojęcia gęstości i ciągłości.
    • R jest ciągła.
  • Zbiory dobrze uporządkowane.
    • Twierdzenie o indukcji.
    • Liczby porządkowe.
    • Zbiory liczb porządkowych.
    • Twierdzenie o definiowaniu przez indukcje pozaskończoną
    • Twierdzenie Zermelo,
    • Dowód lemat Kuratowskiego Zorna
  • Język rachunku predykatów
    • Rezolucja i automatyczne dowodzenie twierdzeń

Literatura

  1. H. Rasiowa, Wstęp do matematyki, PWN, Warszawa 1971, 1984, 1998
  2. K. Kuratowski, A. Mostowski, Teoria mnogości, PWN, Warszawa, 1978
  3. W. Marek, J. Onyszkiewicz, Elementy logiki i teorii mnogosci w zadaniach, PWN, 1996.

Moduły

  1. Temat 1 (Ćwiczenia 1)
  2. Temat 2 (Ćwiczenia 2)
  3. Temat 3 (Ćwiczenia 3)
  4. Temat 4 (Ćwiczenia 4)
  5. Temat 5 (Ćwiczenia 5)
  6. Temat 6 (Ćwiczenia 6)
  7. Temat 7 (Ćwiczenia 7)
  8. Temat 8 (Ćwiczenia 8)
  9. Temat 9 (Ćwiczenia 9)
  10. Temat 10 (Ćwiczenia 10)
  11. Temat 11 (Ćwiczenia 11)
  12. Temat 12 (Ćwiczenia 12)