TTS Moduł 5: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Daniel-PW (dyskusja | edycje)
Nie podano opisu zmian
Daniel-PW (dyskusja | edycje)
Nie podano opisu zmian
Linia 17: Linia 17:
{| border="0" cellpadding="4" width="100%"
{| border="0" cellpadding="4" width="100%"
|width="500px" valign="top"|[[Grafika:TTS_M5_Slajd3.png]]
|width="500px" valign="top"|[[Grafika:TTS_M5_Slajd3.png]]
|valign="top"|Zacznijmy od uwagi o tym, jaką linię nazywamy „długą”. Linię będziemy traktowali jako długą, gdy jej fizyczna długość będzie porównywalna z długością fali propagowanego przez nią sygnału. Tak więc dla fali o długości 100 cm (300 MHz) „długą” będzie kabel koncentryczny o fizycznej długości 10 cm, a dla fali o długości 3 mm (100 GHz) „długą” będzie połączenie między elementami układu scalonego wykonanego na arsenku galu o długości fizycznej <math>100\mu\,</math>.
|valign="top"|Zacznijmy od uwagi o tym, jaką linię nazywamy „długą”. Linię będziemy traktowali jako długą, gdy jej fizyczna długość będzie porównywalna z długością fali propagowanego przez nią sygnału. Tak więc dla fali o długości 100 cm (300 MHz) „długą” będzie kabel koncentryczny o fizycznej długości 10 cm, a dla fali o długości 3 mm (100 GHz) „długą” będzie połączenie między elementami układu scalonego wykonanego na arsenku galu o długości fizycznej <math>100\mu m\,</math>.
 
Rozwój techniki radiowej to opanowanie kolejno fal długich, średnich, krótkich i UKF.
Rozwój techniki radarowej to opanowanie kolejnych zakresów mikrofal, od fal decymetrowych, poprzez fale centymetrowe do milimetrowych i submilimetrowych.
 
Granice pasma zwanego mikrofalowym nie są dokładnie precyzowane i przyjmowane są umownie. Zwykle przyjmujemy, że '''mikrofale''', to zakres częstotliwości fal elektromagnetycznych, rozciągający się od 300 MHz do około 1000 GHz. Poniżej wymieniono cztery cechy charakterystyczne zakresu mikrofal.
 
* Rozmiary mikrofalowych elementów i obwodów są porównywalne do długości fal.
* Czas propagacji porównywalny lub wielokrotnie dłuższy od okresu drgań.
* W zakresie częstotliwości mikrofalowych mamy do czynienia z efektem naskórkowości.
* Podstawowym pomiarem zakresu mikrofal jest pomiar mocy.
 
Na rysunku pokazano podział podstawowego zakresu częstotliwości pasma mikrofalowego na podpasma, które mają swoje tradycyjne, literowe oznaczenia. Pasmo fal decymetrowych to oznaczane jest przez L, pasmo 3 cm oznaczane jest przez X, itd.
 
|}
 
<hr width="100%">
 
{| border="0" cellpadding="4" width="100%"
|width="500px" valign="top"|[[Grafika:TTS_M5_Slajd4.png]]
|valign="top"|Przeanalizowana zostanie prosta i często spotykana w praktyce struktura prowadnicy falowej, jaką jest linia dwuprzewodowa – patrz rysunek. Przewody tej linii są wykonane z dobrze przewodzącego metalu i „zanurzone” w materiale dielektrycznym. Żaden z tych materiałów nie jest idealnym przewodnikiem, czy też dielektrykiem. Znaczenie użytego przymiotnika „długa” zostanie wyjaśnione dalej.
 
Celem analizy jest opisanie procesu zmian napięcia i prądu wzdłuż takiego obwodu, gdyż łatwo przewidzieć, że wywołaniu przyrostu napięcia na jednym końcu opisywanej linii nie towarzyszy natychmiastowe pojawienie się identycznego przyrostu na drugim końcu.
 
Przyjmujemy, że propagacja zachodzi w jednym tylko wymiarze '''z''', wzdłuż linii długiej.
 
Problem: Jak propagują się zmiany napięcia '''u(t,z)''' i prądu '''i(t,z)''' wzdłuż linii długiej?
 
 
 
|}
 
<hr width="100%">
 
{| border="0" cellpadding="4" width="100%"
|width="500px" valign="top"|[[Grafika:TTS_M5_Slajd4.png]]
|valign="top"|

Wersja z 04:40, 18 sie 2006

Moduł 5 poświęcony jest opisaniu zjawisk zachodzących w linii długiej w procesie propagacji fali. Wprowadzimy dużo nowych pojęć i definicji, które będą wykorzystywane w dalszych wykładach i ćwiczeniach. Poznanie ich i przyswojenie pozwoli zrozumieć materiał następnych jednostek. Poza tym pozwoli zrozumieć działanie złożonych układów i systemów.

Lista pojęć, z którymi zapoznamy się w tym wykładzie i których znaczenie powinniśmy zrozumieć, jest długa. Zaczniemy od prezentacji równań opisujących zjawiska propagacji fali, potem opiszemy rozwiązania tych równań, fale rozchodzące się w układzie: generator-linia długa-obciążenie. Wprowadzimy pojęcia współczynnika odbicia i omówimy warunki dopasowania w rozumieniu impedancyjnym i energetycznym. Omówimy zjawisko fali stojącej i wprowadzimy pojęcie transformacji impedancji. Wreszcie wprowadzimy pojęcie dopasowania i omówimy jak projektować obwody dopasowujące.

Zacznijmy od uwagi o tym, jaką linię nazywamy „długą”. Linię będziemy traktowali jako długą, gdy jej fizyczna długość będzie porównywalna z długością fali propagowanego przez nią sygnału. Tak więc dla fali o długości 100 cm (300 MHz) „długą” będzie kabel koncentryczny o fizycznej długości 10 cm, a dla fali o długości 3 mm (100 GHz) „długą” będzie połączenie między elementami układu scalonego wykonanego na arsenku galu o długości fizycznej 100μm.

Rozwój techniki radiowej to opanowanie kolejno fal długich, średnich, krótkich i UKF. Rozwój techniki radarowej to opanowanie kolejnych zakresów mikrofal, od fal decymetrowych, poprzez fale centymetrowe do milimetrowych i submilimetrowych.

Granice pasma zwanego mikrofalowym nie są dokładnie precyzowane i przyjmowane są umownie. Zwykle przyjmujemy, że mikrofale, to zakres częstotliwości fal elektromagnetycznych, rozciągający się od 300 MHz do około 1000 GHz. Poniżej wymieniono cztery cechy charakterystyczne zakresu mikrofal.

  • Rozmiary mikrofalowych elementów i obwodów są porównywalne do długości fal.
  • Czas propagacji porównywalny lub wielokrotnie dłuższy od okresu drgań.
  • W zakresie częstotliwości mikrofalowych mamy do czynienia z efektem naskórkowości.
  • Podstawowym pomiarem zakresu mikrofal jest pomiar mocy.

Na rysunku pokazano podział podstawowego zakresu częstotliwości pasma mikrofalowego na podpasma, które mają swoje tradycyjne, literowe oznaczenia. Pasmo fal decymetrowych to oznaczane jest przez L, pasmo 3 cm oznaczane jest przez X, itd.


Przeanalizowana zostanie prosta i często spotykana w praktyce struktura prowadnicy falowej, jaką jest linia dwuprzewodowa – patrz rysunek. Przewody tej linii są wykonane z dobrze przewodzącego metalu i „zanurzone” w materiale dielektrycznym. Żaden z tych materiałów nie jest idealnym przewodnikiem, czy też dielektrykiem. Znaczenie użytego przymiotnika „długa” zostanie wyjaśnione dalej.

Celem analizy jest opisanie procesu zmian napięcia i prądu wzdłuż takiego obwodu, gdyż łatwo przewidzieć, że wywołaniu przyrostu napięcia na jednym końcu opisywanej linii nie towarzyszy natychmiastowe pojawienie się identycznego przyrostu na drugim końcu.

Przyjmujemy, że propagacja zachodzi w jednym tylko wymiarze z, wzdłuż linii długiej.

Problem: Jak propagują się zmiany napięcia u(t,z) i prądu i(t,z) wzdłuż linii długiej?