SOP wyk nr 11-Slajd10: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Dwa (dyskusja | edycje)
Nie podano opisu zmian
 
Dwa (dyskusja | edycje)
Nie podano opisu zmian
 
Linia 4: Linia 4:




Przeplot jest takim globalnym uporządkowaniem akcji w systemie, które zachowuje porządek wynikający z programu każdego ze współbieżnych procesów. Używając zależności teoriomnogościowych, można stwierdzić, że ?1? ''i'' ? ''n'' ?''i'' ? ? lub dokładniej, że relacja ? jest liniowym rozszerzeniem przechodniego domknięcia sumy mnogościowej ?1? ''i'' ? ''n'' ?''i'' .
Przeplot jest takim globalnym uporządkowaniem akcji w systemie, które zachowuje porządek wynikający z programu każdego ze współbieżnych procesów. Używając zależności teoriomnogościowych, można stwierdzić, że Y<sub>1&le;x<sub>n</sub></sub>&rarr;<sub>i</sub>&sube;&rarr; lub dokładniej, że relacja &rarr; jest liniowym rozszerzeniem przechodniego domknięcia sumy mnogościowej Y<sub>1&le;x<sub>n</sub></sub>.


Przeplot może być analizowany w kontekście zrealizowanego już przetwarzania, a może być rozważany potencjalnie, jako ciąg dopuszczalnych zdarzeń i wynikających z nich stanów, na potrzeby weryfikacji poprawności lub innych własności. W tym drugim przypadku, uwzględniając niedeterminizm, należałoby raczej mówić o pewnym zbiorze możliwych przeplotów, czyli różnych uporządkowaniach tego samego lub zbliżonego zbioru zdarzeń. Różnice w samym zbiorze zdarzeń mogą wynikać z faktu, że w zależności od stanu przetwarzania, przebieg sterowania w poszczególnych procesach może być nieco inny, w związku z czym pewne instrukcje mogą zostać pominięte.  
Przeplot może być analizowany w kontekście zrealizowanego już przetwarzania, a może być rozważany potencjalnie, jako ciąg dopuszczalnych zdarzeń i wynikających z nich stanów, na potrzeby weryfikacji poprawności lub innych własności. W tym drugim przypadku, uwzględniając niedeterminizm, należałoby raczej mówić o pewnym zbiorze możliwych przeplotów, czyli różnych uporządkowaniach tego samego lub zbliżonego zbioru zdarzeń. Różnice w samym zbiorze zdarzeń mogą wynikać z faktu, że w zależności od stanu przetwarzania, przebieg sterowania w poszczególnych procesach może być nieco inny, w związku z czym pewne instrukcje mogą zostać pominięte.  

Aktualna wersja na dzień 10:44, 16 sie 2006

Przeplot i osiągalność stanu

Przeplot i osiągalność stanu


Przeplot jest takim globalnym uporządkowaniem akcji w systemie, które zachowuje porządek wynikający z programu każdego ze współbieżnych procesów. Używając zależności teoriomnogościowych, można stwierdzić, że Y1≤xni⊆→ lub dokładniej, że relacja → jest liniowym rozszerzeniem przechodniego domknięcia sumy mnogościowej Y1≤xn.

Przeplot może być analizowany w kontekście zrealizowanego już przetwarzania, a może być rozważany potencjalnie, jako ciąg dopuszczalnych zdarzeń i wynikających z nich stanów, na potrzeby weryfikacji poprawności lub innych własności. W tym drugim przypadku, uwzględniając niedeterminizm, należałoby raczej mówić o pewnym zbiorze możliwych przeplotów, czyli różnych uporządkowaniach tego samego lub zbliżonego zbioru zdarzeń. Różnice w samym zbiorze zdarzeń mogą wynikać z faktu, że w zależności od stanu przetwarzania, przebieg sterowania w poszczególnych procesach może być nieco inny, w związku z czym pewne instrukcje mogą zostać pominięte.

Z punktu widzenia analizy określonych własności, typu bezpieczeństwo, żywotność, zakleszczenie, istotny jest nie tyle przeplot ile stan systemu, który powstanie w wyniku zajścia zdarzeń w przeplocie. Kluczowe w tym kontekście jest pojęcie osiągalności stanów. Osiągalność jakiegoś stanu z innego stanu zachodzi wówczas, gdy istnieje przeplot, który prowadzi z jednego stanu do drugiego. Wyraża to formalnie definicja rekurencyjna, przedstawiona na slajdzie.


<< Poprzedni slajd | Spis treści | Następny slajd >>