Matematyka dyskretna 1/Ćwiczenia 11: Teoria liczb II: Różnice pomiędzy wersjami
m Zastępowanie tekstu – „.↵</math>” na „</math>” |
m Zastępowanie tekstu – „,↵</math>” na „</math>,” |
||
Linia 186: | Linia 186: | ||
<center><math>\mu(mn)=(-1)^{k+l}=(-1)^k(-1)^l=\mu(m)\mu(n) | <center><math>\mu(mn)=(-1)^{k+l}=(-1)^k(-1)^l=\mu(m)\mu(n)</math>,</center> | ||
</math></center> | |||
Wersja z 21:45, 11 wrz 2023
Teoria liczb II
Ćwiczenie 1
Podaj zbiór rozwiązań następujących równań:
- ,
- ,
- ,
- ,
- ,
- .
Ćwiczenie 2
Wyznacz najmniejsze, nieujemne rozwiązania układu równań:
Ćwiczenie 3
Wyznacz najmniejsze, nieujemne rozwiązania układu równań:
Ćwiczenie 4
Policz wartości funkcji Eulera:
- ,
- ,
- .
Ćwiczenie 5
Policz możliwie szybko:
- { mod},
- { mod},
- { mod}.
Ćwiczenie 6
Funkcja liczbowa określona na zbiorze jest multyplikatywna, jeśli dla dowolnych względnie pierwszych zachodzi
Widzieliśmy, że -Eulera jest multyplikatywna. Pokaż, że:
- funkcja Mobiusa jest multyplikatywna,
- jeśli funkcja jest multyplikatywna to też.
Ćwiczenie 7
Udowodnij, że liczba naturalna jest pierwsza wtedy i tylko wtedy, gdy .
Komentarz: Fakt ten znany jest jako Twierdzenie Wilsona. Pierwszy te prawidłowość zauważył John Wilson, student Edwarda Waringa. Żaden z nich nie był w stanie tego udowodnić. Pierwszy dowód przedstawił Lagrange w 1773 roku. Twierdzenie to daje potencjalną możliwość sprawdzenia czy liczba naturalna jest pierwsza. Nie znamy jednak efektywnych algorytmów obliczania silni, nawet w arytmetyce modularnej.