Języki, automaty i obliczenia/Ćwiczenia 13: Złożoność obliczeniowa.: Różnice pomiędzy wersjami
m Zastępowanie tekstu – „ </math>” na „</math>” |
m Zastępowanie tekstu – „ </math>” na „</math>” |
||
Linia 37: | Linia 37: | ||
W oczywisty sposób otrzymujemy, że ilość wymaganych kroków czasowych maszyny jest ograniczona przez wielomian (dla dużych <math>n</math>). | W oczywisty sposób otrzymujemy, że ilość wymaganych kroków czasowych maszyny jest ograniczona przez wielomian (dla dużych <math>n</math>). | ||
Dla małych <math>n</math> możemy zawsze rozbudować maszynę tak, aby akceptowała słowa bez żadnego testowania. | Dla małych <math>n</math> możemy zawsze rozbudować maszynę tak, aby akceptowała słowa bez żadnego testowania. | ||
Zatem <math>L\in </math> '''P''' . | Zatem <math>L\in</math> '''P''' . | ||
</div></div> | </div></div> | ||
Wersja z 11:00, 5 wrz 2023
Ćwiczenia 13
Ćwiczenie 1
W trakcie wykładu rozważaliśmy język
wykazując, że NP .
Uzasadnij, że takżeĆwiczenie 2
Uzasadnij, że funkcja jest konstruowalna pamięciowo.
Ćwiczenie 3
Uzasadnij, że funkcja jest konstruowalna pamięciowo.
Ćwiczenie 4
Zadanie domowe - cwiczenie 6 - do wykładu 12 polegało na konstrukcji maszyny Turinga akceptującej język:
Zmodyfikuj, ewentualnie, tę konstrukcję , aby udowodnić P .
Ćwiczenie 5
Zadanie domowe - cwiczenie 7 - do wykładu 12 polegało na konstrukcji niedeterministycznej maszyny Turinga akceptującej język:
Zmodyfikuj, ewentualnie, tę konstrukcję aby udowodnić, że
NP .
Podpowiedź: wykorzystaj konstrukcję z wyrocznią. Dla słowa wejściowego przeprowadź weryfikację w trzech etapach: konstrukcja słów , gdzie (wyrocznia), sklejanie, weryfikacja, czy .
Ćwiczenie 6
Uzasadnij, że jeśli funkcja jest konstruowalna pamięciowo, to obliczenie z definicji
konstruowalności pamięciowej (tzn. ,
) następuje w co najwyżej krokach, gdzie jest pewną
stałą niezależną od .
Podpowiedź: przeanalizuj ilość możliwych konfiguracji.
Ćwiczenie 7
Uzasadnij, że funkcja jest konstruowalna pamięciowo.