Analiza matematyczna 1/Ćwiczenia 1: Zbiory liczbowe: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
m Zastępowanie tekstu – „<math> ” na „<math>”
m Zastępowanie tekstu – „<math> ” na „<math>”
Linia 3: Linia 3:
{{cwiczenie|1.1.||
{{cwiczenie|1.1.||
Sprawdzić, czy liczby: <math>\frac{3}{7}</math>,
Sprawdzić, czy liczby: <math>\frac{3}{7}</math>,
<math>\sqrt{2}-1</math>, <math> \sqrt{5}-2</math>, <math>\frac{1}{\sqrt{2}}</math>,
<math>\sqrt{2}-1</math>, <math>\sqrt{5}-2</math>, <math>\frac{1}{\sqrt{2}}</math>,
<math>\frac{1}{\sqrt{3}}</math> należą do trójkowego zbioru Cantora.
<math>\frac{1}{\sqrt{3}}</math> należą do trójkowego zbioru Cantora.


Linia 9: Linia 9:


<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Wskazówka </span><div class="mw-collapsible-content" style="display:none">
<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Wskazówka </span><div class="mw-collapsible-content" style="display:none">
Można posłużyć się kalkulatorem i wyznaczyć przybliżenia dziesiętne podanych liczb. Następnie sprawdzić, czy skazane liczby należą do zbiorów <math> C_0</math>, <math>C_1</math>, <math>C_2</math>, ...
Można posłużyć się kalkulatorem i wyznaczyć przybliżenia dziesiętne podanych liczb. Następnie sprawdzić, czy skazane liczby należą do zbiorów <math>C_0</math>, <math>C_1</math>, <math>C_2</math>, ...
</div></div>
</div></div>


<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie </span><div class="mw-collapsible-content" style="display:none">
<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie </span><div class="mw-collapsible-content" style="display:none">
Mamy
Mamy
<center><math> \begin{align} &\frac{3}{7}&=0,4285714...&\notin C_1\\
<center><math>\begin{align} &\frac{3}{7}&=0,4285714...&\notin C_1\\
&\sqrt{2}-1&=0,4142135...&\notin C_1\\
&\sqrt{2}-1&=0,4142135...&\notin C_1\\
&\sqrt{5}-2&=0,2360679...&\in C_3\setminus C_4 \\
&\sqrt{5}-2&=0,2360679...&\in C_3\setminus C_4 \\
Linia 56: Linia 56:


{{cwiczenie|1.3.||
{{cwiczenie|1.3.||
a) Sprawdzić, że <math>\binom{n}{k}+\binom{n}{k+1}=\binom{n+1}{k+1}</math>, dla dowolnych liczb całkowitych nieujemnych <math>n</math>, <math>k</math> takich, że <math> n>k</math>.
a) Sprawdzić, że <math>\binom{n}{k}+\binom{n}{k+1}=\binom{n+1}{k+1}</math>, dla dowolnych liczb całkowitych nieujemnych <math>n</math>, <math>k</math> takich, że <math>n>k</math>.


b) Wykazać wzór dwumianowy Newtona
b) Wykazać wzór dwumianowy Newtona
Linia 71: Linia 71:


<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie </span><div class="mw-collapsible-content" style="display:none">
<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie </span><div class="mw-collapsible-content" style="display:none">
Dla <math> n=1</math> wzór jest prawdziwy. Wykażemy, że dla każdej liczby naturalnej <math>m</math> prawdziwa jest implikacja
Dla <math>n=1</math> wzór jest prawdziwy. Wykażemy, że dla każdej liczby naturalnej <math>m</math> prawdziwa jest implikacja
<center><math>\bigg[(a+b)^{m}=\sum_{k=0}^{m} \binom{m}{k}a^{m-k}b^k\bigg]\implies \bigg[(a+b)^{m+1}=\sum_{k=0}^{m+1} \binom{m+1}{k}a^{m-k}b^k\bigg]</math></center>
<center><math>\bigg[(a+b)^{m}=\sum_{k=0}^{m} \binom{m}{k}a^{m-k}b^k\bigg]\implies \bigg[(a+b)^{m+1}=\sum_{k=0}^{m+1} \binom{m+1}{k}a^{m-k}b^k\bigg]</math></center>
Przekształćmy
Przekształćmy

Wersja z 22:17, 11 wrz 2023

Zbiory liczbowe

Ćwiczenie 1.1.

Sprawdzić, czy liczby: 37, 21, 52, 12, 13 należą do trójkowego zbioru Cantora.

Wskazówka
Rozwiązanie

Ćwiczenie 1.2.

Wykazać równości

a) q:q1 n:1+q+q2+...+qn=qn+11q1,

b) a, b:ab n:an+1bn+1ab=k=0nankbk.

Wskazówka
Rozwiązanie


Ćwiczenie 1.3.

a) Sprawdzić, że (nk)+(nk+1)=(n+1k+1), dla dowolnych liczb całkowitych nieujemnych n, k takich, że n>k.

b) Wykazać wzór dwumianowy Newtona

a,b n :(a+b)n=k=0n(nk)ankbk.
Wskazówka
Rozwiązanie

Ćwiczenie 1.4.

Za pomocą zasady indukcji matematycznej wykazać, że dla n=0,1,2,3,... zachodzą równości

a) 1+cosa+cos2a+...+cosna=sin(n+12)a+sina22sina2,

b) 0+sina+sin2a+...+sinna=cos(n+12)a+cosa22sina2.

Przypomnijmy, że równości te wyprowadziliśmy w ramach wykładu, korzystając ze wzoru de Moivre'a.

Wskazówka
Rozwiązanie

Ćwiczenie 1.5.

Uprościć wyrażenia

a) (21)5,

b) (1+i3)6,

c) 2+3+23.

Wskazówka
Rozwiązanie

Ćwiczenie 1.6.

Rozwiązać w zbiorze liczb zespolonych równania

a) z6+64=0,

b) 1+z+z2+z3+z4+z5=0,

c) 2z3=1+i.

Wskazówka
Rozwiązanie