Test GR2: Różnice pomiędzy wersjami
m Zastępowanie tekstu – „\displaystyle ” na „” |
m Zastępowanie tekstu – „ </math>” na „</math>” |
||
Linia 14: | Linia 14: | ||
<center><math>\left| x \right|\ = \left\{ \begin{array}{rll} x & \text{ gdy }, x\geq 0 \\ -x & \text{ w przeciwnym przypadku}. | <center><math>\left| x \right|\ = \left\{ \begin{array}{rll} x & \text{ gdy }, x\geq 0 \\ -x & \text{ w przeciwnym przypadku}. | ||
\end{array} </math></center> | \end{array}</math></center> | ||
Linia 67: | Linia 67: | ||
\hline & & f'(\{q_0,q_2,q_3,q_4\},a)=\{q_0,q_2,q_3,q_4\} & \\ | \hline & & f'(\{q_0,q_2,q_3,q_4\},a)=\{q_0,q_2,q_3,q_4\} & \\ | ||
\hline & & f'(\{q_0,q_2,q_3,q_4\},b)=\{q_0,q_1,q_2,q_4\} & \\ | \hline & & f'(\{q_0,q_2,q_3,q_4\},b)=\{q_0,q_1,q_2,q_4\} & \\ | ||
\hline \end{array} | \hline \end{array} </math></center> | ||
Linia 82: | Linia 82: | ||
\hline (s_R,\sharp)\mapsto (s_R,\sharp,0) & & \\ | \hline (s_R,\sharp)\mapsto (s_R,\sharp,0) & & \\ | ||
\hline (s_A,\sharp)\mapsto (s_A,\sharp,0) & & \\ | \hline (s_A,\sharp)\mapsto (s_A,\sharp,0) & & \\ | ||
\hline \end{array} | \hline \end{array} </math></center> | ||
Linia 100: | Linia 100: | ||
\hline (s_4,\clubsuit)\mapsto(s_2,\clubsuit,1) & \\ | \hline (s_4,\clubsuit)\mapsto(s_2,\clubsuit,1) & \\ | ||
\hline (s_A,\sharp)\mapsto(s_A,\sharp,0) & (s_R,\sharp)\mapsto(s_R,\sharp,0)\\ | \hline (s_A,\sharp)\mapsto(s_A,\sharp,0) & (s_R,\sharp)\mapsto(s_R,\sharp,0)\\ | ||
\hline \end{array} | \hline \end{array} </math></center> | ||
Linia 119: | Linia 119: | ||
\hline \tau _{\mathcal{A}}(aba) & s_1 & s_1 & s_2\\ | \hline \tau _{\mathcal{A}}(aba) & s_1 & s_1 & s_2\\ | ||
\hline ... & ... & ... & ...\\ | \hline ... & ... & ... & ...\\ | ||
\hline \end{array} | \hline \end{array} </math></center> | ||
Linia 125: | Linia 125: | ||
\hline a & s_1 & s_2 & s_0 & s_2\\ | \hline a & s_1 & s_2 & s_0 & s_2\\ | ||
\hline b & s_3 & s_2 & s_2 & s_2\\ | \hline b & s_3 & s_2 & s_2 & s_2\\ | ||
\hline \end{array} | \hline \end{array} </math></center> | ||
Linia 175: | Linia 175: | ||
| | | | ||
|| | || | ||
<math>s_{0} | <math>s_{0} </math> || | ||
<math>s_{1} | <math>s_{1} </math> || | ||
<math>s_{2} | <math>s_{2} </math> | ||
|- | |- | ||
| | | | ||
<math>\tau _{\mathcal{A}}(1) | <math>\tau _{\mathcal{A}}(1) </math> || | ||
<math>s_{0} | <math>s_{0} </math> || | ||
<math>s_{1} | <math>s_{1} </math> || | ||
<math>s_{2} | <math>s_{2} </math> | ||
|- | |- | ||
| | | | ||
<math>\tau _{\mathcal{A}}(a) | <math>\tau _{\mathcal{A}}(a) </math> || | ||
<math>s_{1} | <math>s_{1} </math> || | ||
<math>s_{2} | <math>s_{2} </math> || | ||
<math>s_{2} | <math>s_{2} </math> | ||
|- | |- | ||
| | | | ||
<math>\tau _{\mathcal{A}}(b) | <math>\tau _{\mathcal{A}}(b) </math> || | ||
<math>s_{0} | <math>s_{0} </math> || | ||
<math>s_{0} | <math>s_{0} </math> || | ||
<math>s_{0} | <math>s_{0} </math> | ||
|- | |- | ||
| | | | ||
<math>\tau _{\mathcal{A}}(a^{2}) | <math>\tau _{\mathcal{A}}(a^{2}) </math> || | ||
<math>s_{2} | <math>s_{2} </math> || | ||
<math>s_{2} | <math>s_{2} </math> || | ||
<math>s_{2} | <math>s_{2} </math> | ||
|- | |- | ||
| | | | ||
<math>\tau _{\mathcal{A}}(ab) | <math>\tau _{\mathcal{A}}(ab) </math> || | ||
<math>s_{0} | <math>s_{0} </math> || | ||
<math>s_{0} | <math>s_{0} </math> || | ||
<math>s_{2} | <math>s_{2} </math> | ||
|- | |- | ||
| | | | ||
<math>\tau _{\mathcal{A}}(ba) | <math>\tau _{\mathcal{A}}(ba) </math> || | ||
<math>s_{1} | <math>s_{1} </math> || | ||
<math>s_{1} | <math>s_{1} </math> || | ||
<math>s_{1} | <math>s_{1} </math> | ||
|- | |- | ||
| | | | ||
<math>\tau _{\mathcal{A}}(b^{2}) | <math>\tau _{\mathcal{A}}(b^{2}) </math> || | ||
<math>s_{0} | <math>s_{0} </math> || | ||
<math>s_{0} | <math>s_{0} </math> || | ||
<math>s_{0} | <math>s_{0} </math> | ||
|- | |- | ||
| | | | ||
<math>\tau _{\mathcal{A}}(aba) | <math>\tau _{\mathcal{A}}(aba) </math> || | ||
<math>s_{1} | <math>s_{1} </math> || | ||
<math>s_{1} | <math>s_{1} </math> || | ||
<math>s_{2} | <math>s_{2} </math> | ||
|- | |- | ||
| | | |
Wersja z 11:02, 5 wrz 2023
0 | 0 | 1 | 1 | |
0 | 1 | 0 | 1 | |
1 | 0 | 1 | 1 | |
1 | 1 | 1 | 1 |
oraz
Ostatecznie, gramatyka w postaci Greibach ma postać:
Algorytm Minimalizuj2 - algorytm minimalizacji automatu wykorzystujący stabilizujący się ciąg relacji
1 Wejście: - automat taki, że . 2 Wyjście: automat minimalny dla . 3 ; 4 ; 5 repeat 6 Parser nie mógł rozpoznać (nieznana funkcja „\slash”): {\displaystyle \slash \slash} oblicz : ; 7 ; 8 empty 9 for each do 10 flagtrue; 11 for each 12 if not then 13 flagfalse; 14 end if 15 end for 16 if flag=true and then 17 ; 18 end if 19 end for 20 until 21 Parser nie mógł rozpoznać (nieznana funkcja „\slash”): {\displaystyle S' \leftarrow S \slash \overline{\rho}_i} ; 22 for each Parser nie mógł rozpoznać (nieznana funkcja „\slash”): {\displaystyle [s]_{\overline{\rho}_i} \in S \slash \overline{\rho}_i} do 23 for each do 24 ; 25 end for 26 end for 27 ; 28 ; 29 return ;
|| || | |
|| || || | |
|| || || | |
|| || || | |
|| || || | |
|| || || | |
|| || || | |
|| || || | |
|| || || | |
... || ... || ... || ... | |
alalalalaa
alala
Złożoność czasowa | Złożoność pamięciowa | |
---|---|---|
Maszyna dodająca | ||
Maszyna rozpoznająca |
0 | 1 | ... | ... | |
---|---|---|---|---|
Cell1 | Cell2 |
0 | 1 | ||
---|---|---|---|
0 | 1 | 1 | |
1 | 0 | 1 |
0 | 1 | |
1 | 0 |
0 | 1 | ||
---|---|---|---|
0 | 0 | 0 | |
1 | 0 | 1 |
0 | 1 | ||
---|---|---|---|
0 | 0 | 1 | |
1 | 1 | 1 |
0 | 0 | 0 | 1 | 1 | 1 | 1 |
0 | 1 | 0 | 1 | 1 | 0 | 1 |
1 | 0 | 0 | 1 | 0 | 1 | 1 |
1 | 1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |
0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 |
1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 |
1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
Numer funkcji |
||||||
---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | ||
1 | 0 | 0 | 0 | 1 | ||
2 | 0 | 0 | 1 | 0 | ||
3 | 0 | 0 | 1 | 1 | ||
4 | 0 | 1 | 0 | 0 | ||
5 | 0 | 1 | 0 | 1 | ||
6 | 0 | 1 | 1 | 0 | ||
7 | 0 | 1 | 1 | 1 | ||
8 | 1 | 0 | 0 | 0 | ||
9 | 1 | 0 | 0 | 1 | ||
10 | 1 | 0 | 1 | 0 | ||
11 | 1 | 0 | 1 | 1 | ||
12 | 1 | 1 | 0 | 0 | ||
13 | 1 | 1 | 0 | 1 | ||
14 | 1 | 1 | 1 | 0 | ||
15 | 1 | 1 | 1 | 1 |
0 | 0 | 0 | 1 | 0 | 1 | 0 |
0 | 0 | 1 | 1 | 1 | 0 | 1 |
0 | 1 | 0 | 0 | 1 | 0 | 1 |
0 | 1 | 1 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 1 | 1 | 1 |
1 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 0 | 0 | 0 |
1 | 1 | 1 | 1 | 1 | 1 | 1 |
0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 |
0 | 1 | 0 | 1 |
0 | 1 | 1 | 0 |
1 | 0 | 0 | 1 |
1 | 0 | 1 | 0 |
1 | 1 | 0 | 0 |
1 | 1 | 1 | 1 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 1 |
0 | 1 | 0 | 1 |
0 | 1 | 1 | 1 |
1 | 0 | 0 | 1 |
1 | 0 | 1 | 1 |
1 | 1 | 0 | 0 |
1 | 1 | 1 | 1 |
0 | 1 | 2 | ||
---|---|---|---|---|
0 | 2 | 2 | 2 | |
1 | 0 | 2 | 2 | |
2 | 0 | 1 | 2 |
Nagroda Goedla
Zobacz Nagroda Goedla]]
Nagroda Turinga
Zobacz Nagroda Turinga
Nagroda Knutha
Zobacz Nagroda Knutha
Parser nie mógł rozpoznać (błąd składni): {\displaystyle g(C)=\left\{\begin{align} C\cup \{f(C')\}\\C\end{align} \right}
Parser nie mógł rozpoznać (błąd składni): {\displaystyle c\forall d\; c\in C \land d\in C \land c\sqsubseteq d\implies c\sqsubseteq' d, (C,\sqsubseteq) \preccurlyeq (C',\sqsubseteq') \iff C\subset C' \land \left\{\begin{align} \forall c \forall d\; &(c\in C\land d\in C) \implies (c\sqsubseteq d \iff c\sqsubseteq' d) \text{ oraz }\\ \forall c \forall d\; &(c\in C\land d\in C'\setminus C) \implies c\sqsubseteq' d \end{align} \right}
dla każdego Parser nie mógł rozpoznać (błąd składni): {\displaystyle a \in A \\h(n', a) = g(h(n, a), n, a)}
dla każdego i
dla każdego Parser nie mógł rozpoznać (błąd składni): {\displaystyle a \in A \\ e(g(n, a), n, a)}
dla każdego i