Wstęp do programowania / Ćwiczenia 5: Różnice pomiędzy wersjami
Linia 224: | Linia 224: | ||
Napisz program obliczający sufit z pierwiastka z x, dla <math> x \in N ,x>0 </math> (oczywiście bez operacji pierwiastek). | Napisz program obliczający sufit z pierwiastka z x, dla <math> x \in N ,x>0 </math> (oczywiście bez operacji pierwiastek). | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Wskazówka 1</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
Najprostsze rozwiązanie jest liniowe ze względu na wartość pierwiastka z x. | Najprostsze rozwiązanie jest liniowe ze względu na wartość pierwiastka z x. | ||
</div> | </div> | ||
</div> | </div> | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie 1</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
'''function''' SufitZPierwiastka1(x:integer):integer; | '''function''' SufitZPierwiastka1(x:integer):integer; | ||
//Dla x > 0 wyznaczamy sufit z pierwiastka z x | //Dla x > 0 wyznaczamy sufit z pierwiastka z x | ||
Linia 245: | Linia 248: | ||
</div> | </div> | ||
</div> | </div> | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Wskazówka 2</span> | |||
<div class="mw-collapsible-content" style="display:none">Oczywiście lepiej jest to zrobić binarnie. Szukamy takiej liczby całkowitej i z przedziału [1..x], że (i-1)*(i-1) < x ≤ i*i. | |||
</div> | </div> | ||
</div> | </div> | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie 2</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
'''function''' SufitZPierwiastka2(x:integer):integer; | '''function''' SufitZPierwiastka2(x:integer):integer; | ||
//Dla x > 0 wyznaczamy sufit z pierwiastka z x | //Dla x > 0 wyznaczamy sufit z pierwiastka z x | ||
Linia 272: | Linia 279: | ||
</div> | </div> | ||
</div> | </div> | ||
===Inna wersja zadania=== | ===Inna wersja zadania=== | ||
A jak znaleźć podłogę z pierwiastka z x ? | A jak znaleźć podłogę z pierwiastka z x ? | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Wskazówka 3</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
Analogicznie jak w Rozwiązaniu 2. | Analogicznie jak w Rozwiązaniu 2. | ||
</div> | </div> | ||
</div> | </div> | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie 3</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
'''function''' PodłogaZPierwiastka(x:integer):integer; | '''function''' PodłogaZPierwiastka(x:integer):integer; | ||
//Dla x > 0 wyznaczamy podłogę z pierwiastka z x | //Dla x > 0 wyznaczamy podłogę z pierwiastka z x | ||
Linia 305: | Linia 316: | ||
</div> | </div> | ||
</div> | </div> | ||
== Zadanie 7 (BinPower)== | == Zadanie 7 (BinPower)== |
Wersja z 15:53, 28 maj 2020
<<< Powrót do modułu Składnia i semantyka instrukcji
To są zadania na wyszukiwanie binarne.
Oglądaj wskazówki i rozwiązania __SHOWALL__
Ukryj wskazówki i rozwiązania __HIDEALL__
Zadanie 1 (Pierwsze wystąpienie x)
Dana jest posortowana niemalejąco tablica A typu array[1..N] of integer i x typu integer. Znajdź miejsce pierwszego wystąpienia x (lub 0 gdy nie ma żadnego x)
Rozwiązanie 1
Ćwiczenie 1
Zadanie 2 (Ostatnie wystąpienie x)
Dana jest posortowana niemalejąco tablica A typu array[1..N] of integer i x typu integer. Znajdź miejsce ostatniego wystąpienia x (lub 0 gdy nie ma żadnego x)
Wskazówka 1
Rozwiązanie 1
Ćwiczenie 1
Zadanie 3 (Liczba wystąpień x)
Dana jest posortowana niemalejąco tablica A typu array[1..N] of integer i x typu integer. Wyznacz liczbę wystąpień x w tablicy A.
Wskazówka 1
Rozwiązanie 1
Zadanie 4 (Wartość równa indeksowi)
Dana jest posortowana rosnąco tablica A typu array[1..N] of integer. Sprawdź czy występuje w niej element o wartości równej swojemu indeksowi. Jeśli tak, to wyznacz ten indeks, jeśli nie, to funkcja ma dać wartość 0.
Wskazówka 1
Rozwiązanie 1
Zadanie 5 (Maksimum w ciągu bitonicznym)
Dana jest tablica A typu array[1..N] of integer, w której wartości ułożone są w ciąg bitoniczny (czyli istnieje 1 ≤ i ≤ N, takie że dla wszystkich k, takich że 1 ≤ k < i zachodzi A[k] < A[k+1] a dla wszystkich k, takich że i ≤ k < N zachodzi A[k] > A[k+1]). Znajdź maksimum w tym ciągu.
Wskazówka 1
Rozwiązanie 1
Zadanie 6 (Pierwiastek z x)
Napisz program obliczający sufit z pierwiastka z x, dla (oczywiście bez operacji pierwiastek).
Wskazówka 1
Rozwiązanie 1
Wskazówka 2
Rozwiązanie 2
Inna wersja zadania
A jak znaleźć podłogę z pierwiastka z x ?
Wskazówka 3
Rozwiązanie 3
Zadanie 7 (BinPower)
Dla zadanych x,n > 0 wyznacz xn (oczywiscie bez exp i ln).
Wskazówka 1
Wskazówka 2
Rozwiązanie 1
O ile istnieją proste algorytmy mnożące w czasie wielomianowym (choćby szkolne słupki), to w przypadku potęgowania nie ma oczywistego szybkiego algorytmu potęgującego. Można spytać, po co usprawniać kod potęgowania, gdy wykładniki w naturze wcale nie sa takie duże. Nic bardziej mylnego! W jednym z najpopularniejszych algorytmów kryptograficznych - kodowaniu RSA - używa się potęgowania o wykładnikach będących bardzo dużymi liczbami (zazwyczaj stukilkudziesięciocyfrowymi!). Poleglibyśmy sromotnie, gdybyśmy próbowali mnożyć odpowiednią liczbę razy przez siebie podstawę potęgowania.
Zadanie 8 (Najdłuższy podciąg niemalejący)
Dana jest tablica A typu array[1..N] of integer, N > 1. Należy obliczyć długość najdłuższego podciągu niemalejącego w A.
Wskazówka 1
Rozwiązanie 1
Ćwiczenie 1