Wstęp do programowania / Ćwiczenia 5: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Linia 50: Linia 50:
miejsce ostatniego wystąpienia x (lub 0 gdy nie ma żadnego x)
miejsce ostatniego wystąpienia x (lub 0 gdy nie ma żadnego x)


{{wskazowka| 1||<div class="mw-collapsible mw-made=collapsible mw-collapsed"><div class="mw-collapsible-content" style="display:none">
<div class="mw-collapsible mw-made=collapsible mw-collapsed">
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Wskazówka 1</span>
<div class="mw-collapsible-content" style="display:none">
Funkcja div ciągnie w lewo. Jeśli liczba jest nieparzysta, wówczas obcina wynik w dół. Aby uzyskać symetryczny efekt, powinniśmy się zastanowić, jak zmusić div do zaokrąglania w górę.  
Funkcja div ciągnie w lewo. Jeśli liczba jest nieparzysta, wówczas obcina wynik w dół. Aby uzyskać symetryczny efekt, powinniśmy się zastanowić, jak zmusić div do zaokrąglania w górę.  
</div>
</div>
</div>}}
</div>




{{rozwiazanie| 1||<div class="mw-collapsible mw-made=collapsible mw-collapsed"><div class="mw-collapsible-content" style="display:none">
<div class="mw-collapsible mw-made=collapsible mw-collapsed">
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie 1</span>
<div class="mw-collapsible-content" style="display:none">
  '''function''' ZnajdźOstatnie(N,x:integer; A:array[1..N] of integer):integer;
  '''function''' ZnajdźOstatnie(N,x:integer; A:array[1..N] of integer):integer;
  //Tablica A posortowana niemalejąco; szukamy ostatniego wystąpienia x w A
  //Tablica A posortowana niemalejąco; szukamy ostatniego wystąpienia x w A
Linia 78: Linia 82:


</div>
</div>
</div>}}
</div>
 
<div class="mw-collapsible mw-made=collapsible mw-collapsed">
{{cwiczenie| 1|pytanko 1|<div class="mw-collapsible mw-made=collapsible mw-collapsed"><div class="mw-collapsible-content" style="display:none">
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Ćwiczenie 1</span>
<div class="mw-collapsible-content" style="display:none">
Jaka będzie wartość A[l] w przypadku, gdy x nie ma w tablicy A ?
Jaka będzie wartość A[l] w przypadku, gdy x nie ma w tablicy A ?
</div>
</div>
</div>}}
</div>


== Zadanie 3 (Liczba wystąpień x)==
== Zadanie 3 (Liczba wystąpień x)==

Wersja z 15:48, 28 maj 2020

<<< Powrót do modułu Składnia i semantyka instrukcji

To są zadania na wyszukiwanie binarne.

Oglądaj wskazówki i rozwiązania __SHOWALL__
Ukryj wskazówki i rozwiązania __HIDEALL__


Zadanie 1 (Pierwsze wystąpienie x)

Dana jest posortowana niemalejąco tablica A typu array[1..N] of integer i x typu integer. Znajdź miejsce pierwszego wystąpienia x (lub 0 gdy nie ma żadnego x)

Rozwiązanie 1

Ćwiczenie 1

Zadanie 2 (Ostatnie wystąpienie x)

Dana jest posortowana niemalejąco tablica A typu array[1..N] of integer i x typu integer. Znajdź miejsce ostatniego wystąpienia x (lub 0 gdy nie ma żadnego x)

Wskazówka 1


Rozwiązanie 1

Ćwiczenie 1

Zadanie 3 (Liczba wystąpień x)

Dana jest posortowana niemalejąco tablica A typu array[1..N] of integer i x typu integer. Wyznacz liczbę wystąpień x w tablicy A.

Wskazówka 1

{{{3}}}

Rozwiązanie 1

{{{3}}}

Zadanie 4 (Wartość równa indeksowi)

Dana jest posortowana rosnąco tablica A typu array[1..N] of integer. Sprawdź czy występuje w niej element o wartości równej swojemu indeksowi. Jeśli tak, to wyznacz ten indeks, jeśli nie, to funkcja ma dać wartość 0.

Wskazówka 1

{{{3}}}

Rozwiązanie 1

{{{3}}}

Zadanie 5 (Maksimum w ciągu bitonicznym)

Dana jest tablica A typu array[1..N] of integer, w której wartości ułożone są w ciąg bitoniczny (czyli istnieje 1 ≤ i ≤ N, takie że dla wszystkich k, takich że 1 ≤ k < i zachodzi A[k] < A[k+1] a dla wszystkich k, takich że i ≤ k < N zachodzi A[k] > A[k+1]). Znajdź maksimum w tym ciągu.

Wskazówka 1

{{{3}}}

Rozwiązanie 1

{{{3}}}

Zadanie 6 (Pierwiastek z x)

Napisz program obliczający sufit z pierwiastka z x, dla xN,x>0 (oczywiście bez operacji pierwiastek).

Wskazówka 1

{{{3}}}

Rozwiązanie 1

{{{3}}}

Wskazówka 2

{{{3}}}

Rozwiązanie 2

{{{3}}}

Inna wersja zadania

A jak znaleźć podłogę z pierwiastka z x ?

Wskazówka 3

{{{3}}}

Rozwiązanie 3

{{{3}}}

Zadanie 7 (BinPower)

Dla zadanych x,n > 0 wyznacz xn (oczywiscie bez exp i ln).

Wskazówka 1

{{{3}}}

Wskazówka 2

{{{3}}}

Rozwiązanie 1

{{{3}}}

O ile istnieją proste algorytmy mnożące w czasie wielomianowym (choćby szkolne słupki), to w przypadku potęgowania nie ma oczywistego szybkiego algorytmu potęgującego. Można spytać, po co usprawniać kod potęgowania, gdy wykładniki w naturze wcale nie sa takie duże. Nic bardziej mylnego! W jednym z najpopularniejszych algorytmów kryptograficznych - kodowaniu RSA - używa się potęgowania o wykładnikach będących bardzo dużymi liczbami (zazwyczaj stukilkudziesięciocyfrowymi!). Poleglibyśmy sromotnie, gdybyśmy próbowali mnożyć odpowiednią liczbę razy przez siebie podstawę potęgowania.

Zadanie 8 (Najdłuższy podciąg niemalejący)

Dana jest tablica A typu array[1..N] of integer, N > 1. Należy obliczyć długość najdłuższego podciągu niemalejącego w A.

Wskazówka 1

{{{3}}}

Rozwiązanie 1

{{{3}}}

Ćwiczenie 1

{{{3}}}