Wstęp do programowania / Ćwiczenia 5: Różnice pomiędzy wersjami
Linia 50: | Linia 50: | ||
miejsce ostatniego wystąpienia x (lub 0 gdy nie ma żadnego x) | miejsce ostatniego wystąpienia x (lub 0 gdy nie ma żadnego x) | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Wskazówka 1</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
Funkcja div ciągnie w lewo. Jeśli liczba jest nieparzysta, wówczas obcina wynik w dół. Aby uzyskać symetryczny efekt, powinniśmy się zastanowić, jak zmusić div do zaokrąglania w górę. | Funkcja div ciągnie w lewo. Jeśli liczba jest nieparzysta, wówczas obcina wynik w dół. Aby uzyskać symetryczny efekt, powinniśmy się zastanowić, jak zmusić div do zaokrąglania w górę. | ||
</div> | </div> | ||
</div> | </div> | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie 1</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
'''function''' ZnajdźOstatnie(N,x:integer; A:array[1..N] of integer):integer; | '''function''' ZnajdźOstatnie(N,x:integer; A:array[1..N] of integer):integer; | ||
//Tablica A posortowana niemalejąco; szukamy ostatniego wystąpienia x w A | //Tablica A posortowana niemalejąco; szukamy ostatniego wystąpienia x w A | ||
Linia 78: | Linia 82: | ||
</div> | </div> | ||
</div> | </div> | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Ćwiczenie 1</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
Jaka będzie wartość A[l] w przypadku, gdy x nie ma w tablicy A ? | Jaka będzie wartość A[l] w przypadku, gdy x nie ma w tablicy A ? | ||
</div> | </div> | ||
</div> | </div> | ||
== Zadanie 3 (Liczba wystąpień x)== | == Zadanie 3 (Liczba wystąpień x)== |
Wersja z 15:48, 28 maj 2020
<<< Powrót do modułu Składnia i semantyka instrukcji
To są zadania na wyszukiwanie binarne.
Oglądaj wskazówki i rozwiązania __SHOWALL__
Ukryj wskazówki i rozwiązania __HIDEALL__
Zadanie 1 (Pierwsze wystąpienie x)
Dana jest posortowana niemalejąco tablica A typu array[1..N] of integer i x typu integer. Znajdź miejsce pierwszego wystąpienia x (lub 0 gdy nie ma żadnego x)
Rozwiązanie 1
Ćwiczenie 1
Zadanie 2 (Ostatnie wystąpienie x)
Dana jest posortowana niemalejąco tablica A typu array[1..N] of integer i x typu integer. Znajdź miejsce ostatniego wystąpienia x (lub 0 gdy nie ma żadnego x)
Wskazówka 1
Rozwiązanie 1
Ćwiczenie 1
Zadanie 3 (Liczba wystąpień x)
Dana jest posortowana niemalejąco tablica A typu array[1..N] of integer i x typu integer. Wyznacz liczbę wystąpień x w tablicy A.
Wskazówka 1
Rozwiązanie 1
Zadanie 4 (Wartość równa indeksowi)
Dana jest posortowana rosnąco tablica A typu array[1..N] of integer. Sprawdź czy występuje w niej element o wartości równej swojemu indeksowi. Jeśli tak, to wyznacz ten indeks, jeśli nie, to funkcja ma dać wartość 0.
Wskazówka 1
Rozwiązanie 1
Zadanie 5 (Maksimum w ciągu bitonicznym)
Dana jest tablica A typu array[1..N] of integer, w której wartości ułożone są w ciąg bitoniczny (czyli istnieje 1 ≤ i ≤ N, takie że dla wszystkich k, takich że 1 ≤ k < i zachodzi A[k] < A[k+1] a dla wszystkich k, takich że i ≤ k < N zachodzi A[k] > A[k+1]). Znajdź maksimum w tym ciągu.
Wskazówka 1
Rozwiązanie 1
Zadanie 6 (Pierwiastek z x)
Napisz program obliczający sufit z pierwiastka z x, dla (oczywiście bez operacji pierwiastek).
Wskazówka 1
Rozwiązanie 1
Wskazówka 2
Rozwiązanie 2
Inna wersja zadania
A jak znaleźć podłogę z pierwiastka z x ?
Wskazówka 3
Rozwiązanie 3
Zadanie 7 (BinPower)
Dla zadanych x,n > 0 wyznacz xn (oczywiscie bez exp i ln).
Wskazówka 1
Wskazówka 2
Rozwiązanie 1
O ile istnieją proste algorytmy mnożące w czasie wielomianowym (choćby szkolne słupki), to w przypadku potęgowania nie ma oczywistego szybkiego algorytmu potęgującego. Można spytać, po co usprawniać kod potęgowania, gdy wykładniki w naturze wcale nie sa takie duże. Nic bardziej mylnego! W jednym z najpopularniejszych algorytmów kryptograficznych - kodowaniu RSA - używa się potęgowania o wykładnikach będących bardzo dużymi liczbami (zazwyczaj stukilkudziesięciocyfrowymi!). Poleglibyśmy sromotnie, gdybyśmy próbowali mnożyć odpowiednią liczbę razy przez siebie podstawę potęgowania.
Zadanie 8 (Najdłuższy podciąg niemalejący)
Dana jest tablica A typu array[1..N] of integer, N > 1. Należy obliczyć długość najdłuższego podciągu niemalejącego w A.
Wskazówka 1
Rozwiązanie 1
Ćwiczenie 1