Wstęp do programowania/Rekursja/Ćwiczenia: Różnice pomiędzy wersjami
Linia 11: | Linia 11: | ||
Czy istnieje ścieżka miedzy wskazanymi punktami (i1,j1) i (i2,j2) w labiryncie reprezentowanym przez prostokątną tablicę liczb całkowitych o rozmiarze M×N, zawierającą zera (ściana) i jedynki (droga)? Zakładamy, że nie można przechodzić z pola na pole po skosie (np. z (2,5) na (3,6)), a tylko w czterech podstawowych kierunkach (np. z (2,5) na (3,5), (2,4) itd.) | Czy istnieje ścieżka miedzy wskazanymi punktami (i1,j1) i (i2,j2) w labiryncie reprezentowanym przez prostokątną tablicę liczb całkowitych o rozmiarze M×N, zawierającą zera (ściana) i jedynki (droga)? Zakładamy, że nie można przechodzić z pola na pole po skosie (np. z (2,5) na (3,6)), a tylko w czterech podstawowych kierunkach (np. z (2,5) na (3,5), (2,4) itd.) | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Wskazówka 1</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
Właściwą funkcję rekurencyjną szukającą drogi zamknij w funkcji-otoczce, która poza wywołaniem funkcji rekurencyjnej sprawdzi poprawność argumentów, przygotuje i/lub posprząta tablicę z labiryntem, zinterpretuje wynik funkcji rekurencyjnej itp. oraz będzie przechowywać dane wspólne dla wszystkich wywołań funkcji rekurencyjnej. | Właściwą funkcję rekurencyjną szukającą drogi zamknij w funkcji-otoczce, która poza wywołaniem funkcji rekurencyjnej sprawdzi poprawność argumentów, przygotuje i/lub posprząta tablicę z labiryntem, zinterpretuje wynik funkcji rekurencyjnej itp. oraz będzie przechowywać dane wspólne dla wszystkich wywołań funkcji rekurencyjnej. | ||
</div> | </div> | ||
</div> | </div> | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie 1</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
'''function''' Labirynt(M,N:integer; '''var''' A:'''array'''[1..M,1..N] '''of''' integer; i1,j1,i2,j2:integer):boolean; | '''function''' Labirynt(M,N:integer; '''var''' A:'''array'''[1..M,1..N] '''of''' integer; i1,j1,i2,j2:integer):boolean; | ||
// M,N >= 1 | // M,N >= 1 | ||
Linia 79: | Linia 83: | ||
Aby przeprowadzić dowód przez sprzeczność, załóżmy, że funkcja 'szukaj' wywołana w funkcji 'Labirynt' dała wynik false, a ścieżka z (i1,j1) do (i2,j2) istnieje. W takim razie A[i1,j1]=-1 a A[i2,j2]=1. Wynika z tego, że ścieżka z (i1,j1) do (i2,j2) w którymś miejscu ''opuszcza'' zaznaczoną część tablicy, czyli istnieją dwa sąsiednie pola (i,j) i (i',j') na tej ścieżce, takie że A[i,j]=-1, A[i',j']=1. Z tego wynika, że funkcja szukaj została (w czasie działania programu) wywołana z parametrami (i,j), ale nie została wywołana z parametrami (i',j'). Jest to niemożliwe, bo pola te sąsiadują ze sobą i wywołanie dla (i,j) wywołałoby rekurencyjnie 'szukaj' dla (i',j'). | Aby przeprowadzić dowód przez sprzeczność, załóżmy, że funkcja 'szukaj' wywołana w funkcji 'Labirynt' dała wynik false, a ścieżka z (i1,j1) do (i2,j2) istnieje. W takim razie A[i1,j1]=-1 a A[i2,j2]=1. Wynika z tego, że ścieżka z (i1,j1) do (i2,j2) w którymś miejscu ''opuszcza'' zaznaczoną część tablicy, czyli istnieją dwa sąsiednie pola (i,j) i (i',j') na tej ścieżce, takie że A[i,j]=-1, A[i',j']=1. Z tego wynika, że funkcja szukaj została (w czasie działania programu) wywołana z parametrami (i,j), ale nie została wywołana z parametrami (i',j'). Jest to niemożliwe, bo pola te sąsiadują ze sobą i wywołanie dla (i,j) wywołałoby rekurencyjnie 'szukaj' dla (i',j'). | ||
</div> | </div> | ||
</div> | </div> | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Ćwiczenie 1</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
Ile razy maksymalnie może być wywołana funkcja 'szukaj' dla tego samego punktu? | Ile razy maksymalnie może być wywołana funkcja 'szukaj' dla tego samego punktu? | ||
</div> | </div> | ||
</div> | </div> | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Ćwiczenie 2</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
Jak przerobić przedstawione rozwiązanie na program wypisujący na ekran ścieżkę pomiędzy punktami (i1,j1) i (i2,j2), o ile taka ścieżka istnieje? Czy wypisana ścieżka będzie najkrótsza z możliwych ? | Jak przerobić przedstawione rozwiązanie na program wypisujący na ekran ścieżkę pomiędzy punktami (i1,j1) i (i2,j2), o ile taka ścieżka istnieje? Czy wypisana ścieżka będzie najkrótsza z możliwych ? | ||
</div> | </div> | ||
</div> | </div> | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Ćwiczenie 3</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
Co by się stało, gdybyśmy usuwali zaznaczenie wychodząc z funkcji 'szukaj'? Czy program dalej by działał? Jeśli tak, to jaką by miał złożoność? | Co by się stało, gdybyśmy usuwali zaznaczenie wychodząc z funkcji 'szukaj'? Czy program dalej by działał? Jeśli tak, to jaką by miał złożoność? | ||
</div> | </div> | ||
</div> | </div> | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Odpowiedź</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
Program dalej by działał, ale miałby wykładniczą złożoność czasową zamiast liniowej (złożoność pamięciowa pozostałaby liniowa). W tej wersji program wielokrotnie przeszukiwałby sąsiadów pól, o których już z wcześniejszych obliczeń wiadomo, że nie da się z nich dojść do punktu końcowego. | Program dalej by działał, ale miałby wykładniczą złożoność czasową zamiast liniowej (złożoność pamięciowa pozostałaby liniowa). W tej wersji program wielokrotnie przeszukiwałby sąsiadów pól, o których już z wcześniejszych obliczeń wiadomo, że nie da się z nich dojść do punktu końcowego. | ||
</div> | </div> | ||
</div> | </div> | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | <div class="mw-collapsible mw-made=collapsible mw-collapsed"> |
Wersja z 16:14, 28 maj 2020
To są zadania na rekursję.
Oglądaj wskazówki i rozwiązania __SHOWALL__
Ukryj wskazówki i rozwiązania __HIDEALL__
Zadanie 1 (Labirynt)
Czy istnieje ścieżka miedzy wskazanymi punktami (i1,j1) i (i2,j2) w labiryncie reprezentowanym przez prostokątną tablicę liczb całkowitych o rozmiarze M×N, zawierającą zera (ściana) i jedynki (droga)? Zakładamy, że nie można przechodzić z pola na pole po skosie (np. z (2,5) na (3,6)), a tylko w czterech podstawowych kierunkach (np. z (2,5) na (3,5), (2,4) itd.)
Wskazówka 1
Rozwiązanie 1
Ćwiczenie 1
Ćwiczenie 2
Ćwiczenie 3
Odpowiedź
Dla ciekawskich:
Zadanie 2 (Z górki na pazurki)
W tablicy liczb całkowitych o rozmiarze M×N zapisana jest mapa gór (każdy punkt ma podaną dodatnią wysokość). Sprawdź, czy da się przejść z punktu startowego (i1,j1) do docelowego (i2,j2) idąc:
- tylko w dół lub po płaskim
- tylko w dół
Tak jak w poprzednim zadaniu poruszać się można tylko w czterech kierunkach podstawowych, nie po przekątnej.
Wskazówka 1
Rozwiązanie 1
Rozwiązanie 2
Zadanie 3 (Wieże Hanoi z ograniczeniami)
Na wykładzie omawiane były wieże Hanoi. Ciekawa modyfikacja tego zadania polega na zabronieniu ruchów pomiędzy niektórymi pałeczkami, np. z pierwszej na drugą. Zapisać procedurę realizującą to zadanie przy zabronionych niektórych ruchach.
Wskazówka 1
Rozwiązanie 1
Ćwiczenie 1
Odpowiedź
Zadanie 4 (Ustawianie hetmanów)
Napisz procedurę znajdująca wszystkie takie rozstawienia 8 hetmanów na szachownicy, by żadne dwa hetmany się nie atakowały.
Wskazówka 1
Rozwiązanie 1
Zadanie 5 (Mnożenie wielomianów)
Dane są dwie tablice (array[0..N-1] of real) reprezentujące dwa wielomiany stopnia N-1. Należy obliczyć iloczyn tych wielomianów metodą dziel-i-zwyciężaj. Zakładamy, że N jest potęgą dwójki.
Wskazówka 1
Zadanie 6 (Suma składników)
Napisz procedurę, która wypisze dla zadanej liczby n jej wszystkie rozkłady na sumy liczb naturalnych większych od zera ustawionych w kolejności nierosnącej. Np. dla n = 3:
3 = 3
3 = 2+1
3 = 1+1+1
Wskazówka 1
Wskazówka 2
Rozwiązanie 1