|
|
Linia 67: |
Linia 67: |
| {| border="0" cellpadding="4" width="100%" | | {| border="0" cellpadding="4" width="100%" |
| |width="500px" valign="top"|[[Grafika:GKIW_M4_Slajd4.png|thumb|500px]] | | |width="500px" valign="top"|[[Grafika:GKIW_M4_Slajd4.png|thumb|500px]] |
| |valign="top"|Niech <math>x_p, y_p, z_p\,</math>, opisują położenie punktu w trójwymiarowym kartezjańskim układzie współrzędnych. W grafice komputerowej do opisu położenia oraz opisu operacji (transformacji geometrycznych), którym punkty będą podlegały, jest używany '''układ współrzędnych jednorodnych znormalizowanych'''. Dzięki temu wszystkie stosowane transformacje geometryczne mogą być opisane w identyczny sposób za pomocą mnożenia macierzowego. Jeśli współrzędne <math>x_p, y_p, z_p\,</math> opisują położenie punktu, to odpowiada temu wektor <math>P=\begin{bmatrix} x_p & y_p & z_p & 1 \\ \end{bmatrix}^T</math> we współrzędnych jednorodnych znormalizowanych. We współrzędnych nieznormalizowanych wektor ten miałby postać <math>P=\begin{bmatrix} \overset{\sim}{x_p} & \overset{\sim}{y_p} & \overset{\sim}{z_p} & \overset{\sim}{N} \\ \end{bmatrix}^T</math> dla <math>\overset{\sim}{N}\neq 0</math> . Przy czym <math>\displaystyle x_p=\frac{\overset{\sim}{x_p}}{\overset{\sim}{N}}</math> , <math>\displaystyle y_p=\frac{\overset{\sim}{y_p}}{\overset{\sim}{N}}</math> , <math>\displaystyle z_p=\frac{\overset{\sim}{z_p}}{\overset{\sim}{N}}</math> , co nosi nazwę operacji normalizacji. | | |valign="top"|Niech <math>x_p, y_p, z_p\,</math>, opisują położenie punktu w trójwymiarowym kartezjańskim układzie współrzędnych. W grafice komputerowej do opisu położenia oraz opisu operacji (transformacji geometrycznych), którym punkty będą podlegały, jest używany '''układ współrzędnych jednorodnych znormalizowanych'''. Dzięki temu wszystkie stosowane transformacje geometryczne mogą być opisane w identyczny sposób za pomocą mnożenia macierzowego. Jeśli współrzędne <math>x_p, y_p, z_p\,</math> opisują położenie punktu, to odpowiada temu wektor <math>P=\begin{bmatrix} x_p & y_p & z_p & 1 \\ \end{bmatrix}^T</math> we współrzędnych jednorodnych znormalizowanych. We współrzędnych nieznormalizowanych wektor ten miałby postać <math>P=\begin{bmatrix} \overset{\sim}{x_p} & \overset{\sim}{y_p} & \overset{\sim}{z_p} & \overset{\sim}{N} \\ \end{bmatrix}^T</math> dla <math>\overset{\sim}{N}\neq 0</math> . Przy czym <math>x_p=\frac{\overset{\sim}{x_p}}{\overset{\sim}{N}}</math> , <math>y_p=\frac{\overset{\sim}{y_p}}{\overset{\sim}{N}}</math> , <math>z_p=\frac{\overset{\sim}{z_p}}{\overset{\sim}{N}}</math> , co nosi nazwę operacji normalizacji. |
|
| |
|
| Zastosowanie w przypadku przesunięcia na płaszczyźnie współrzędnych jednorodnych można sobie wyobrazić jako umieszczenie płaszczyzny, na której pracujemy, w trójwymiarowym układzie współrzędnych, w taki sposób, aby nie przechodziła ona przez początek układu (tzn. dla <math>z=h_z\neq 0</math> ). Wtedy analogiczne opisanie operacji translacji na płaszczyźnie (ale już jako macierz 3x3) da poprawne rozwiązanie, gdyż punkt stały – początek układu współrzędnych jest poza płaszczyzną, na której jest wykonywana operacja. Jednocześnie, aby wynik operacji znajdował się na tej samej płaszczyźnie, najprościej operować na współrzędnych znormalizowanych, czyli pracować na płaszczyźnie <math>z=1</math>. | | Zastosowanie w przypadku przesunięcia na płaszczyźnie współrzędnych jednorodnych można sobie wyobrazić jako umieszczenie płaszczyzny, na której pracujemy, w trójwymiarowym układzie współrzędnych, w taki sposób, aby nie przechodziła ona przez początek układu (tzn. dla <math>z=h_z\neq 0</math> ). Wtedy analogiczne opisanie operacji translacji na płaszczyźnie (ale już jako macierz 3x3) da poprawne rozwiązanie, gdyż punkt stały – początek układu współrzędnych jest poza płaszczyzną, na której jest wykonywana operacja. Jednocześnie, aby wynik operacji znajdował się na tej samej płaszczyźnie, najprościej operować na współrzędnych znormalizowanych, czyli pracować na płaszczyźnie <math>z=1</math>. |