MN05LAB: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Przykry (dyskusja | edycje)
Nie podano opisu zmian
Przykry (dyskusja | edycje)
mNie podano opisu zmian
Linia 1: Linia 1:
<!--  
<!--  
Konwertowane  z pliku LaTeX przez latex2mediawiki, zob. http://www.ii.uj.edu.pl/&nbsp;pawlik1/latex2mediawiki.php.
Konwertowane  z pliku LaTeX przez latex2mediawiki, zob. http://www.ii.uj.edu.pl/&nbsp;pawlik1/latex2mediawiki.php.
Linia 333: Linia 332:


{{algorytm|||
{{algorytm|||
<pre>\EATWSZnajdź rozkład <math>\displaystyle PA = LU</math>;
<pre>Znajdź rozkład <math>\displaystyle PA = LU</math>;
Utwórz macierz <math>\displaystyle B = [b_1,\ldots,b_k]</math>;
Utwórz macierz <math>\displaystyle B = [b_1,\ldots,b_k]</math>;
Rozwiąż <math>\displaystyle LY = B</math>;
Rozwiąż <math>\displaystyle LY = B</math>;

Wersja z 21:11, 29 wrz 2006


Rozwiązywanie układów równań liniowych

<<< Powrót do strony głównej przedmiotu Metody numeryczne

Oglądaj wskazówki i rozwiązania __SHOWALL__
Ukryj wskazówki i rozwiązania __HIDEALL__

Uwaga

Niektóre fragmenty zadań wymagają wykorzystania procedur LAPACKa; te części odłóż do momentu, gdy opanujesz następny wykład, dotyczący m.in. bibliotek algebry liniowej.

Ćwiczenie: Metoda Cholesky'ego

Ważnym przykładem macierzy szczególnej postaci są macierze symetryczne i dodatnio określone. Są to macierze spełniające warunki:

A=ATorazxTAx>0,x0.

Dla takich macierzy można nieco zmniejszyć koszt kombinatoryczny i zużycie pamięci, przeprowadzając trochę inny rozkład na macierze trójkątne: tak, aby otrzymać rozkład

A=LDLT

zamiast PA=LU, przy czym L jest tu jak zwykle macierzą trójkątną dolną z jedynkami na przekątnej, a D jest macierzą diagonalną z dodatnimi elementami na diagonali. Opracuj taki algorytm. W jego implementacji możesz porównywać się z procedurą LAPACKa DPOSV. Inny wariant tego samego rozkładu to tak zwany rozkład Cholesky'ego--Banachiewicza, w którym, przy tych samych założeniach na A, szukamy rozkładu wykorzystującego tylko jedną macierz trójkątną dolną:

A=L~L~T,

(oczywiście tym razem nie żądamy, aby L~ miała na diagonali jedynki). Jaka jest relacja między rozkładem LDLT a L~L~T?

Rozwiązanie

Ćwiczenie: Mnożyć przez odwrotność to nie zawsze to samo...

W Octave układ równań Ax=b rozwiązujemy korzystając z "operatora rozwiązywania równania"

x = A \ b;

Ale w Octave jest także funkcja inv, wyznaczająca macierz odwrotną, więc niektóre (nie najlepsze, oględnie mówiąc) podręczniki zalecają

x = inv(A)*b;

Przedyskutuj, które podejście jest lepsze i dlaczego. Przeprowadź eksperymenty numeryczne weryfikujące twoją tezę.

Rozwiązanie

Ćwiczenie: Wybór elementu głównego jest naprawdę ważny!

Rozwiąż prosty układ równań

Parser nie mógł rozpoznać (nieznana funkcja „\aligned”): {\displaystyle \displaystyle \aligned 10^{-18} x_1 + x_2 &= 1,\\ x_1 + 2x_2 &= 4, \endaligned}

czterema sposobami:

  • na kartce papieru (dokładnie!)
  • w komputerze, w arytmetyce podwójnej precyzji, korzystając z rozkładu LU bez wyboru elementu głównego
  • jak poprzednio, ale z wyborem elementu głównego w kolumnie
  • w LAPACKu lub Octave.

Porównaj uzyskane rozwiązania i wyciągnij wnioski.

Rozwiązanie

Ćwiczenie

Zapisz w Octave algorytm rozkładu LU macierzy (bez wyboru elementu głównego) działający in situ.

Wskazówka

Wykorzystaj go do napisania funkcji, która rozwiąże układ równań Ax=b.

Przetestuj tę funkcję na kilku macierzach i porównaj czas jego działania z czasem wykonania operacji x = A\b.

Spróbuj zastosować swój algorytm do kilku specjalnych macierzy:

  • Hilberta dużego wymiaru
  • diagonalnej z jednym elementem bardzo małym (a nawet równym zero)
Rozwiązanie

Ćwiczenie: Układy równań z wieloma prawymi stronami

Podaj sposób taniego wyznaczenia rozwiązania sekwencji k<N układów równań z tą samą macierzą ARN×N i różnymi prawymi stronami:

Axi=bi,i=1,,k.

Układy równań z tą samą macierzą, ale ze zmieniającą się prawą stroną równania powstają często na przykład przy rozwiązywaniu równań różniczkowych cząstkowych, gdzie prawa strona układu odpowiada zmieniającym się warunkom brzegowym.

Wskazówka
Rozwiązanie

Ćwiczenie: Obliczanie wyznacznika macierzy

Bardzo rzadko w praktyce numerycznej zdarza się potrzeba obliczenia wartości wyznacznika macierzy ARN×N. Zaproponuj metodę obliczania det(A) oraz wskaż, jakiego rodzaju problemy numeryczne możesz napotkać.

Rozwiązanie