Zaawansowane algorytmy i struktury danych/Ćwiczenia 5: Różnice pomiędzy wersjami
Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Nie podano opisu zmian |
Nie podano opisu zmian |
||
Linia 1: | Linia 1: | ||
{{zadanie| | == Zadanie 1 == | ||
{{kotwica|zadanie 2|}} | |||
Zaproponuj efektywny algorytm obliczania najkrótszych ścieżek z jednego wierzchołka w [[dag<nowiki>|</nowiki>DAGu]] o dowolnych wagach krawędzi. | Zaproponuj efektywny algorytm obliczania najkrótszych ścieżek z jednego wierzchołka w [[dag<nowiki>|</nowiki>DAGu]] o dowolnych wagach krawędzi. | ||
Po pierwsze w DAGu nie ma cykli a więc także nie ma cykli o ujemnej wadze. Zauważmy, że wszystkie ścieżki w DAGu idą zgodnie z porządkiem topologicznym, a więc także te najkrótsze. Odległości DAGu można więc policzyć wykonując [[#relaksacja | <div class="mw-collapsible mw-made=collapsible mw-collapsed">'''Rozwiązanie''' | ||
<div class="mw-collapsible-content" style="display:none"> | |||
Po pierwsze w DAGu nie ma cykli a więc także nie ma cykli o ujemnej wadze. Zauważmy, że wszystkie ścieżki w DAGu idą zgodnie z porządkiem topologicznym, a więc także te najkrótsze. Odległości DAGu można więc policzyć wykonując [[#relaksacja|relaksację]] krawędzi w porządku topologicznym. | |||
}} | }} | ||
</div> | |||
</div> | |||
== Zadanie 2 == | == Zadanie 2 == |
Wersja z 17:26, 23 lip 2006
Zadanie 1
Zaproponuj efektywny algorytm obliczania najkrótszych ścieżek z jednego wierzchołka w [[dag|DAGu]] o dowolnych wagach krawędzi.
Rozwiązanie
Zadanie 2
Układ ograniczeń różnicowych zadany jest poprzez zbiór zmiennych oraz zbiór nierówności liniowych , gdzie , dla . Rozwiązaniem układu ograniczeń różnicowych jest wartościowanie zmiennych dla którego spełnione są wszystkie nierówności z . Zaproponuj efektywny algorytm znajdujący rozwiązanie układu ograniczeń liniowych.
Rozwiązanie
Zadanie 3
Zaproponuj jak wykorzystać algorytm Bellmana-Forda do sprawdzenia, czy w grafie i wagach krawędzi opisanych funkcją istnieje cykl o ujemnej wadze.
Rozwiązanie