Zaawansowane algorytmy i struktury danych/Ćwiczenia 6: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Dorota (dyskusja | edycje)
Nie podano opisu zmian
Linia 53: Linia 53:
{{kotwica|zadanie 3|}}
{{kotwica|zadanie 3|}}


Mając dane graf <math>G=(V,E)</math>, funkcję wagową <math>w:E \to \mathcal{R}</math>, odległości <math>d(v)</math> z wybranego wierzchołka <math>s</math> do <math>v</math> w grafie <math>G</math>, zaproponuj algorytm obliczania [[../Wykład 5#drzewo_najkrótszych_ścieżek|drzewa najkrótszych ścieżek]] w czasie <math>O(|E|).</math>
Mając dane graf <math>G=(V,E)</math>, funkcję wagową <math>w:E \to \mathcal{R}</math>, odległości <math>d(v)</math> z wybranego wierzchołka <math>s</math> do <math>v</math> w grafie <math>G</math>, zaproponuj algorytm obliczania [[../Wykład 5#drzewo_najkrótszych_ścieżek|drzewa najkrótszych ścieżek]] w czasie <math>O(|E|)</math>




Linia 62: Linia 62:




<center><math> E_{d} = \{(u,v): (u,v)\in E \mbox{ i } d(u) + w(u,v) = d(v). \} </math></center>
<center><math>E_{d} = \{(u,v): (u,v)\in E \mbox{ i } d(u) + w(u,v) = d(v). \}</math></center>





Wersja z 16:59, 31 sie 2023

Zadanie 1

Pokaż, że iloczyn odległości jest przemienny względem dodawania, tzn. że dla macierzy C, D i E rozmiaru n×nzachodzi:


C×min(D+E)=C×minD+C×minE,


oraz


(D+E)×minC=D×minC+E×minC.
Wskazówka

Zadanie 2


Zaproponuj, jak wykorzystać algorytm Bellmana-Forda do sprawdzenia, czy w grafie G=(V,E) i wagach krawędzi opisanych funkcją w:E istnieje cykl o ujemnej wadze.

Rozwiązanie


Zadanie 3

Mając dane graf G=(V,E), funkcję wagową w:E, odległości d(v) z wybranego wierzchołka s do v w grafie G, zaproponuj algorytm obliczania drzewa najkrótszych ścieżek w czasie O(|E|)


Wskazówka