Zaawansowane algorytmy i struktury danych/Ćwiczenia 7: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Sank (dyskusja | edycje)
Sank (dyskusja | edycje)
Linia 23: Linia 23:




{{ramka|1=[[Grafika:zasd_path-transformation.png]]|2=
{{ramka|1=[[Grafika:Zasd_path-transformation.png]]|2=
Konstrukcja ta jest przedstawiona na poniższym rysunku a) przykładowy graf <math>G</math> b) graf <math>G^2_{in,out}</math> skonstruowany na podstawie grafu <math>G</math>.
Konstrukcja ta jest przedstawiona na poniższym rysunku a) przykładowy graf <math>G</math> b) graf <math>G^2_{in,out}</math> skonstruowany na podstawie grafu <math>G</math>.
}}
}}

Wersja z 14:36, 15 wrz 2006

Zadanie 1

Masz dany graf G=(V,E) wraz z dwoma wybranymi wierzchołkami s,tV. Pokaż jak używając algorytmu Hopcrofta-Karpa wyznaczyć maksymalną liczbę wierzchołkowo rozłącznych ścieżek z s do t. Wierzchołki s i t będą oczywiście wspólne dla tych ścieżek.

Rozwiązanie

Zadanie 2

Masz daną sieć przepływową G=(V,E) wraz z dwoma wybranymi wierzchołkami s,tV, w której wszystkie przepustowości krawędzi wynoszą 1. Pokaż jak używając algorytmu Hopcrofta-Karpa wyznaczyć maksymalny przepływ z s do t w sieci G.

Rozwiązanie


Zadanie 3

Masz daną planarną sieć przepływową G=(V,E) wraz z dwoma wybranymi wierzchołkami s,tV, w której wszystkie przepustowości krawędzi wynoszą 1. Pokaż jak rozwiązać problem wyznaczenia maksymalnego przepływu w sieci G poprzez znalezienie maksymalnego skojarzenia w planarnym grafie dwudzielnym, tzn., pokaż konstrukcje tak ta przedstawiona w Zadaniu 1 i 2, ale zachowującą planarność grafu.

Rozwiązanie


Zadanie 4

Masz dany graf G=(V1V2,E) dwudzielny. Pokaż jak używając algorytmu Hopcrofta-Karpa wyznaczyć minimalne pokrycie wierzchołkowe tego grafu.

Rozwiązanie