Zaawansowane algorytmy i struktury danych/Wykład 5: Różnice pomiędzy wersjami
Linia 159: | Linia 159: | ||
Załóżmy teraz, że w grafie <math>G</math> istnieje cykl o ujemnej wadze osiągalny z <math>s</math>. Oznaczmy ten cykl jako <math>c =(v_0, v_1,\ldots, v_k)</math>, gdzie <math>v_0 = v_k</math>. Dla cyklu tego mamy: | Załóżmy teraz, że w grafie <math>G</math> istnieje cykl o ujemnej wadze osiągalny z <math>s</math>. Oznaczmy ten cykl jako <math>c =(v_0, v_1,\ldots, v_k)</math>, gdzie <math>v_0 = v_k</math>. Dla cyklu tego mamy: | ||
{{wzor|wzor_cykl| | {{wzor|wzor_cykl|1| | ||
<math> | <math> | ||
\sum_{i=0}^{k} w(v_{i},v_{i+1}) <0. | \sum_{i=0}^{k} w(v_{i},v_{i+1}) <0. |
Wersja z 17:44, 20 lip 2006
Abstrakt
Pierwsza część tego wykładu poświęcona będzie problemowi obliczania najkrótszych ścieżek w grafie z jednego źródła w przypadku, w którym wagi krawędzi mogą być ujemne. Zaprezentujemy algorytm Bellmana-Forda, który rozwiązuje ten problem w czasie . W drugiej części zajmiemy się problemem obliczania odległości między wszystkimi parami wierzchołków. Pokażemy związki tego problemu z mnożeniem macierzy.
Definicja problemu
W wykładzie tym zajmiemy się problemem obliczania najkrótszych ścieżek w grafie wychodzących z jednego wierzchołka. Załóżmy, że mamy dany graf , funkcję przypisującą wagi krawędziom oraz jeden wybrany wierzchołek . Wagę ścieżki definiujemy jako wagę tworzących ją krawędzi:
Odległość z wierzchołka do wierzchołka
definiujemy jako
Najkrótszą ścieżką z wierzchołka do wierzchołka
jest każda ścieżka z do
, której waga jest równa odległości
z do .
Algorytm Bellmana-Forda
Algorytm Bellmana-Forda służy do rozwiązania problemu znalezienia najkrótszych ścieżek w grafie, w którym wagi krawędzi mogą być ujemne. W problemie tym mamy dany graf i funkcję wagową . Algorytm Bellmana-Forda wylicza dla zadanego wierzchołka , czy istnieje w grafie cykl o ujemnej wadze osiągalny z . Jeżeli taki cykl nie istniej to algorytm oblicza najkrótsze ścieżki z do wszystkich pozostałych wierzchołków wraz z ich wagami.
Relaksacja
Podobnie ja to było w Algorytmie Dijkstry użyjemy metody relaksacji. Metoda ta polega na tym, że w trakcie działania algorytmu dla każdego wierzchołka utrzymujemy wartość będącą górnym ograniczeniem wagi najkrótszej ścieżki ze do . W algorytmie utrzymywać będziemy także dla każdego wierzchołka wskaźnik wskazujący na poprzedni wierzchołek przez który prowadzi dotychczas znaleziona najkrótsza ścieżka. Na początku wielkości te inicjujemy przy pomocy następującej procedury:
Algorytm Inicjacja algorytmu najkrótszych ścieżek
INICJACJA for każdy wierzchołek do
Ustalone przez tą procedure wartości są dobrymi ograniczeniami
górnymi na odległości.
Relaksacja krawędzi polega na sprawdzeniu, czy przechodząc krawędzią z do , nie otrzymamy krótszej ścieżki z do niż ta dotychczas znaleziona. Jeżeli tak to aktualizowane są także wartości i . W celu relaksacji krawędzi używamy procedury RELAKSUJ.
Algorytm Relaksacja krawędzi
RELAKSUJ if then
Algorytm
Po przypomnieniu czym była relaksacja gotowi jesteśmy na zapisanie algorytm Bellmana-Forda, a następnie udowodnienie jego poprawności.
Algorytm Bellmana-Forda
BELLMAN-FORD 1 INICJUJ 2 for to do 3 for każda krawędź do 4 RELAKSUJ 5 for każda krawędź do 6 if ' then 7 return FALSE 8 return TRUE
Poniższa animacja przedstawia działanie algorytmu dla grafu o pięciu wierzchołkach.
Algorytm ten działa w czasie , co jest łatwo pokazać gdyż:
- proces inicjacji linia 1 zajmuje czas ,
- w każdym z przebiegów głównej pętli w lini 2 algorytmu przeglądane są wszystkie krawędzie grafu w linie 3 , co zajmuje czas ,
- końcowa pętla algorytmu linie 5-7 działa w czasie .
Poprawność
Dowód poprawności algorytmu Bellmana-Forda zaczniemy od pokazania, że algorytm działa poprawnie przy założeniu, że w grafie nie ma cykli o ujemnych wagach.
Lemat 1
Dowód
Zauważmy, że teza indukcyjna zachodzi po inicjacji algorytmu, gdyż Załóżmy, że teza indukcyjna zachodzi dla kroku 'tego. Ponieważ ścieżki dla są najkrótsze jako podścieżki ścieżki , to po wykonaniu pętli wartości dla się nie zmienią. Pozostaje nam więc do pokazania to, że wartość będzie dobrze policzona. W przebiegu wykonujemy między innymi relaksację krawędzi . Ponieważ jest dobrze policzone, to po tej relaksacji wyznaczona będzie także poprawnie wartość , bo założyliśmy, że najkrótsza ścieżka do przechodzi przez .
Pozostaje nam jedynie zastanowić się co się dzieje gdy wierzchołek nie jest osiągalny z . Musi wtedy zachodzić pod koniec działania algorytmu. Gdyby tak nie było to oznaczało by, z właściwości procedury RELAKSUJ, że istnieje ścieżka od do . Sprzeczność.
Dowód
Dowód ten można przeprowadzić w podobny sposób do dowodu lematu Lematu 1.

Twierdzenie 3
Dowód
Musimy teraz pokazać, że algorytm poprawnie wykrywa, czy w grafie istnieje cykl ujemnej długości osiągalny z . Jeżeli nie ma takiego cyklu to wtedy są poprawnie policzone przed wykonaniem testu w liniach 5-8 algorytmu Bellmana-Forda. W takim razie zachodzi:
Powyższa nierówność zachodzi ponieważ jest ścieżką w grafie, a więc jest nie krótsza niż najkrótsza ścieżka . Widzimy więc, że w tym przypadku żaden z testów w linijce 6 algorytmu nie będzie spełniony i algorytm zwróci TRUE.
Załóżmy teraz, że w grafie istnieje cykl o ujemnej wadze osiągalny z . Oznaczmy ten cykl jako , gdzie . Dla cyklu tego mamy:
(1)
Gdyby w tej sytuacji algorytm Bellmana-forda zwrócił wartość TRUE to dla każdej krawędzi musiałaby zachodzić nierówność . Sumując tą nierówność stronami po wszystkich otrzymujemy.
ponieważ to
Wiemy, że cykl jest osiągalny a zatem dla każdego mamy . Możemy więc skrócić po obydwu stronach równania i otrzymujemy:
