Zaawansowane algorytmy i struktury danych/Wykład 5: Różnice pomiędzy wersjami
Linia 73: | Linia 73: | ||
Bellmana-Forda, a następnie udowodnienie jego poprawności. | Bellmana-Forda, a następnie udowodnienie jego poprawności. | ||
{{algorytm| | {{algorytm|Bellmana-Forda|algorytm_Bellmana-Forda| | ||
BELLMAN-FORD<math>(G,w,s)</math> | |||
1 INICJUJ<math>(G,s)</math> | |||
2 '''for''' <math>i=1</math> '''to''' <math>|V|-1</math> '''do''' | |||
3 '''for''' każda krawędź <math>(u,v) \in E</math> '''do''' | |||
4 RELAKSUJ<math>(u,v,w)</math> | |||
5 '''for''' każda krawędź <math>(u,v) \in E</math> '''do''' | |||
6 '''if''' '<math>d(v)>d(u) + w(u,v)</math> '''then''' | |||
7 '''return''' FALSE | |||
8 '''return''' TRUE | |||
}} | }} | ||
Wersja z 12:02, 20 lip 2006
Abstrakt
Pierwsza część tego wykładu poświęcona będzie problemowi obliczania najkrótszych ścieżek w grafie z jednego źródła w przypadku, w którym wagi krawędzi mogą być ujemne. Zaprezentujemy algorytm Bellmana-Forda, który rozwiązuje ten problem w czasie . W drugiej części zajmiemy się problemem obliczania odległości między wszystkimi parami wierzchołków. Pokażemy związki tego problemu z mnożeniem macierzy.
Algorytm Bellmana-Forda
Algorytm Bellmana-Forda służy do rozwiązania problemu
znalezienia najkrótszych ścieżek w grafie, w którym wagi krawędzi
mogą być ujemne. W problemie tym mamy dany graf
i funkcję wagową . Algorytm
Bellmana-Forda wylicza dla zadanego wierzchołka , czy
istnieje w grafie cykl o ujemnej wadze osiągalny z
. Jeżeli taki cykl nie istniej to algorytm oblicza
najkrótsze ścieżki z do wszystkich pozostałych
wierzchołków wraz z ich wagami.
Relaksacja
Podobnie ja to było w Algorytmie Dijkstry użyjemy metody relaksacji. Metoda ta polega na tym, że w trakcie działania algorytmu dla każdego wierzchołka utrzymujemy wartość będącą górnym ograniczeniem wagi najkrótszej ścieżki ze do . W algorytmie utrzymywać będziemy także dla każdego wierzchołka wskaźnik wskazujący na poprzedni wierzchołek przez, który prowadzi dotychczas znaleziona najkrótsza ścieżka. Na początku wielkości te inicjujemy przy pomocy następującej procedury:
Algorytm Inicjalizacja algorytmu najkrótszych ścieżek
INICJALIZUJ for każdy wierzchołek do
Ustalone przez tą procedure wartości są dobrymi ograniczeniami
górnymi na odległości.
Relaksacja krawędzi polega na sprawdzeniu, czy przechodząc krawędzią z do , nie otrzymamy krótszej ścieżki z do niż ta dotychczas znaleziona. Jeżeli tak to aktualizowane są także wartości i . W celu relaksacji krawędzi używamy procedury RELAKSUJ.
Algorytm Relaksacja krawędzi
RELAKSUJ if then
Algorytm
Po przypomnieniu czym była relaksacja gotowi jesteśmy na zapisanie algorytm Bellmana-Forda, a następnie udowodnienie jego poprawności.
Po przypomnieniu czym była relaksacja gotowi jesteśmy na zapisanie algorytm Bellmana-Forda, a następnie udowodnienie jego poprawności.
Algorytm Bellmana-Forda
BELLMAN-FORD 1 INICJUJ 2 for to do 3 for każda krawędź do 4 RELAKSUJ 5 for każda krawędź do 6 if ' then 7 return FALSE 8 return TRUE
Poniższa animacja przedstawia działanie algorytmu dla grafu o pięciu wierzchołkach.
Algorytm ten działa w czasie , co jest łatwo pokazać gdyż:
- proces inicjacji zajmuje czas ,
- w każdym z przebiegów głównej pętli algorytmu
przeglądane są wszystkie krawędzie grafu, co zajmuje czas ,
- końcowa pętla algorytmu działa w czasie .
Dowód poprawności algorytmu Bellmana-Forda zaczniemy od pokazania, że algorytm działa poprawnie przy założeniu, że w grafie nie ma cykli o ujemnych wagach.
Lemat
Niech będzie grafem skierowanym i niech funkcja zadaje wagi krawędzi. Niech będzie wierzchołkiem z którego liczymy odległości algorytmem Bellmana-Forda. Jeżeli w grafie nie ma cykli o ujemnej wadze osiągalnych z , to algorytm poprawnie oblicza odległości, tzn. na koniec działania algorytmu dla każdego wartość jest odległością w z do .