TTS Moduł 2: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Daniel-PW (dyskusja | edycje)
Nie podano opisu zmian
Daniel-PW (dyskusja | edycje)
Linia 18: Linia 18:
<hr width="100%">
<hr width="100%">


:'''WPROWADZENIE - WIELKOŚCI CHARAKTERYZUJĄCE POLE EM'''




Pola elektryczne i magnetyczne kiedy zmieniają się, to powiązane są ze sobą wieloma związkami, nazwanymi wspólnie równaniami Maxwella. Równania te oparte są na wielu fizycznych eksperymentach prowadzonych przez uczonych całe dziesięciolecia. Równania Maxwella pełnią rolę fundamentu dla całej techniki mikrofalowej, tworzonej i rozwijanej przez ostatnie 100 lat.
Równania Maxwella wiążą ze sobą najważniejsze wielkości pola elektromagnetycznego. Zajmiemy się przestrzenią wypełnioną jednorodnym, izotropowym ośrodkiem, charakteryzowanym przez :


= Słownik =
= Słownik =

Wersja z 10:33, 12 wrz 2006

Wykład



WPROWADZENIE - WIELKOŚCI CHARAKTERYZUJĄCE POLE EM


Pola elektryczne i magnetyczne kiedy zmieniają się, to powiązane są ze sobą wieloma związkami, nazwanymi wspólnie równaniami Maxwella. Równania te oparte są na wielu fizycznych eksperymentach prowadzonych przez uczonych całe dziesięciolecia. Równania Maxwella pełnią rolę fundamentu dla całej techniki mikrofalowej, tworzonej i rozwijanej przez ostatnie 100 lat.

Równania Maxwella wiążą ze sobą najważniejsze wielkości pola elektromagnetycznego. Zajmiemy się przestrzenią wypełnioną jednorodnym, izotropowym ośrodkiem, charakteryzowanym przez :

Słownik

  • Częstotliwość graniczna - częstotliwość powyżej której może się propagować fala w falowodzie. Poniżej tej częstotliwości fala jest silnie tłumiona.
  • Mikrofale - zakres częstotliwości fal elektromagnetycznych od 300 MHz do 1000 GHz.
  • Równania Maxwella - fundamentalne równania techniki mikrofalowej opisujące pole elektromagnetyczne w czasie i przestrzeni.
  • Przenikalność dielektryczna ε i magnetyczna μ -Podstawowe parametry opisujące właściwości przestrzeni odpowiednio dla pola elektrycznego i magnetycznego.
  • Podstawowe parametry pola elektromagnetycznego:
    • Natężenie pola elektrycznego [V/m] .
    • Natężenie pola magnetycznego [A/m] .
  • Indukcja pola elektrycznego D - wielkość wektorowa proporcjonalna do natężenia pola elektrycznego i przenikalności dielektrycznej.
  • Indukcja pola magnetycznego B - wielkość wektorowa proporcjonalna do natężenia pola magnetycznego i przenikalności magnetycznej.
  • I prawo Maxwella - z pierwszego równania Maxwella widać że zmienne pole magnetyczne jest źródłem zmiennego pola elektrycznego
    • W postaci całkowej jest zapisem prawa Faradaya i wiąże ze sobą zmianę strumienia indukcji magnetycznej przenikającego powierzchnię S z polem elektrycznym E całkowanym wzdłuż zamkniętego konturu C otaczającego tą powierzchnię (zal. 2-1).
    • W postaci różniczkowej I prawo Maxwella mówi, że rotacja pola elektrycznego jest równa pochodnej indukcji magnetycznej po czasie (zal.2-6).
  • II prawo Maxwella - z drugiego równania Maxwella widać że źródłem zmiennego pola magnetycznego jest zmienny w czasie prąd lub zmienne pole elektryczne.
    • W postaci całkowej jest zapisem prawa Ampera i wiąże ze sobą zmianę strumienia indukcji elektrycznej i prąd przenikający powierzchnię S z polem magnetycznym E całkowanym wzdłuż zamkniętego konturu C otaczającego tą powierzchnię (zal. 2-2).
    • W postaci różniczkowej II prawo Maxwella mówi nam że rotacja pola magnetycznego jest równa pochodnej indukcji elektrycznej i prądu po czasie (zal.2-6).
  • III prawo Maxwella - jest zapisem prawa Gaussa dla pola elektrycznego i mówi, że źródłem pola indukcji elektrycznej są ładunki elektryczne.
    • W postaci całkowej prawo to mówi że strumień wektora indukcji pola elektrycznego D wypływający z objętości V przez zamkniętą powierzchnię S równy jest zgromadzonemu w tej objętości ładunkowi (zal 2-3).
    • W postaci różniczkowej prawo to mówi że divergencja (rozbieżność) wektora indukcji elektrycznej jest równa gęstości ładunku elektrycznego (zal.2-6).
  • IV prawo Maxwella - jest zapisem prawa Gaussa dla pola magnetycznego i mówi, że pole magnetyczne jest bezźródłowe.
    • W postaci całkowej prawo to mówi że strumień wektora indukcji pola magnetycznego B wypływający z objętości V przez zamkniętą powierzchnię S jest równy 0 co znaczy że pole magnetyczne jest bezźródłowe (zal. 2-4).
    • W postaci różniczkowej prawo to mówi, że divergencja (rozbieżność) wektora indukcji magnetycznej jest równa 0, co również znaczy że pola magnetyczne jest bezźródłowe (zal1-6).
  • Równanie ciągłości prądu - opisuje relacje między prądem i ładunkiem elektrycznym.
    • W postaci całkowej prawo to mówi nam, że prąd przewodzenia wypływający przez powierzchnię S zamkniętej objętości V równy jest szybkości zmian ładunku w tej objętości (zal.2-5).
    • W postaci różniczkowej prawo to mówi nam, że źródłem pola gęstości prądów jest zmiana gęstości ładunku w czasie (zal 2-6).
  • Parametry materiałowe ośrodka dla pola elektromagnetycznego:
    • Przenikalność dielektryczna ε - określa relację między natężeniem pola elektrycznego a jego indukcją (zal. 2-11)
    • Przenikalność magnetyczna μ - określa relację między natężeniem pola magnetycznego a jego indukcją (zal. 2-11)
    • Konduktywność σ - określa relację między natężeniem pola elektrycznego a gęstością prądu przewodzenia ( zal 2-11).
  • Rodzaje ośrodków pod katem właściwości dla pola elektromagnetycznego:
    • Ośrodki liniowe i nieliniowe.
    • Ośrodki jednorodne i niejednorodne.
    • Ośrodki dyspersyjne i niedyspersyjne. Parametry materiałowe ośrodka dyspersyjnego zależą a ośrodka niedyspersyjnego nie zależą od częstotliwości.
    • Ośrodki izotropowe i anizotropowe. Parametry materiałowe ośrodka izotropowego nie zależą zaś ośrodka anizotropowego zależą od kierunku pola
  • Warunki brzegowe na granicy dwóch dielektryków:
    • Nie ma prądów i ładunków powierzchniowych.
    • Składowe normalne wektorów indukcji D i B oraz składowe styczne wektorów natężenia pól E i H są ciągłe.
  • Warunki brzegowe na granicy dielektryk idealny przewodnik: W idealnym przewodniku pole elektryczne jest równe 0 i z tego wynikają następujące jego właściwości:
    • Pole elektryczne musi być prostopadłe do przewodnika.
    • Ta prostopadła (normalna) składowa pola indukuje na powierzchni przewodnika ładunek o gęstości Parser nie mógł rozpoznać (błąd składni): {\displaystyle \rho\,\} równej indukcji elektrycznej D.
    • Pole magnetyczne musi być styczne do przewodnika.
    • Pole magnetyczne wywołuję na powierzchni przewodnika prąd o gęstości powierzchniowej j równej H.
  • Równania Helmholtza - równania falowe dla pól harmonicznych w zapisie zespolonym.
  • Stała propagacji – funkcja parametrów materiałowych ośrodka (zal 2-38). Wartość decyduje o szybkości zmian parametrów fali wzdłuż kierunku propagacji.
  • Stała tłumienia część rzeczywista stałej propagacji, decyduje o szybkości strat mocy fali wzdłuż kierunku jej propagacji (zal. 2-51a)
  • Stała fazowa część urojona stałej propagacji, decyduje o szybkości zmian fazy fali ( zal. 2-51b, 2-52b).
  • Prędkość fazowa fali - prędkość z jaką przesuwa się płaszczyzna stałej fazy fali.
  • Prędkość grupowa fali - jest prędkością przepływu energii.
  • Fala płaska - Wartości chwilowe wektorów pól elektrycznego i magnetycznego tej fali są takie same w każdym punkcie płaszczyzny prostopadłej do kierunku rozchodzenia się fali. Powierzchnia ekwifazowa fali płaskiej jest płaszczyzna prostopadłą do kierunku propagacji.
  • Właściwości fali płaskiej - fala płaska jest falą typu TEM (Transverse Electro-Magnetic)
    • Wektory E i H fali TEM leżą w płaszczyźnie prostopadłej do kierunku propagacji i są prostopadłe względem siebie.
    • Zwrot iloczynu wektorowego pola E razy pole H wyznacza kierunek propagacji a jego moduł gęstość mocy fali.
    • Impedancja falowa (stosunek wartości wzajemnie prostopadłych składowych pola E i H) fali płaskiej jest równy impedancji właściwej ośrodka.

Bibliografia

  1. Bogdan Galwas. Miernictwo mikrofalowe, Wydawnictwa Komunikacji i Łączności, Warszawa, 1985, Rozdział 1, 2 i 3.
  2. Tadeusz Morawski, Wojciech Gwarek. Pola i fale elektromagnetyczne, Wydawnictwa Naukowo-Techniczne, Warszawa, 1998, Rozdział 1 do 8.
  3. Janusz Dobrowolski. Technika wielkich częstotliwości, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 1998 Rozdział 1 i 3.
  4. Stanisław Rosłoniec. Liniowe obwody mikrofalowe, Wydawnictwa Komunikacji i Łączności, Warszawa, 1999, Rozdział 2.