PEE Moduł 7: Różnice pomiędzy wersjami
Nie podano opisu zmian |
Nie podano opisu zmian |
||
Linia 55: | Linia 55: | ||
{| border="0" cellpadding="4" width="100%" | {| border="0" cellpadding="4" width="100%" | ||
|valign="top" width="500px"|[[Grafika: | |valign="top" width="500px"|[[Grafika:PEE_M7_Slajd3a.png|500px]] | ||
|valign="top"|Przy założeniu, że chwilę komutacji uważać będziemy za chwilę początkową analizy obwodu w stanie nieustalonym <math>(t_0=0)</math> istotnym problemem w analizie obwodu jest wyznaczenie warunków początkowych procesu, czyli wartości napięć na kondensatorach i prądów cewek w chwili przełączenia (u nas <math>i_L(0^-)</math> oraz <math>u_C(0^-)</math> ). Zwykle przyjmuje się, że przełączenie następuje ze stanu ustalonego obwodu. Warunki początkowe wynikają wówczas z wartości ustalonych tych wielkości w chwili tuż przed przełączeniem <math>(t_0=0^-)</math> . Warunki początkowe mogą być przy tym zerowe, jeśli prądy wszystkich cewek i napięcia wszystkich kondensatorów w chwili przełączenia miały wartości zerowe. Znajomość warunków początkowych w obwodzie jest niezbędna przy wyznaczaniu rozwiązania obwodu w stanie nieustalonym. | |valign="top"|Przy założeniu, że chwilę komutacji uważać będziemy za chwilę początkową analizy obwodu w stanie nieustalonym <math>(t_0=0)</math> istotnym problemem w analizie obwodu jest wyznaczenie warunków początkowych procesu, czyli wartości napięć na kondensatorach i prądów cewek w chwili przełączenia (u nas <math>i_L(0^-)</math> oraz <math>u_C(0^-)</math> ). Zwykle przyjmuje się, że przełączenie następuje ze stanu ustalonego obwodu. Warunki początkowe wynikają wówczas z wartości ustalonych tych wielkości w chwili tuż przed przełączeniem <math>(t_0=0^-)</math> . Warunki początkowe mogą być przy tym zerowe, jeśli prądy wszystkich cewek i napięcia wszystkich kondensatorów w chwili przełączenia miały wartości zerowe. Znajomość warunków początkowych w obwodzie jest niezbędna przy wyznaczaniu rozwiązania obwodu w stanie nieustalonym. | ||
Linia 312: | Linia 312: | ||
{| border="0" cellpadding="4" width="100%" | {| border="0" cellpadding="4" width="100%" | ||
|valign="top" width="500px"|[[Grafika: | |valign="top" width="500px"|[[Grafika:PEE_M7_Slajd13a.png|500px]] | ||
|valign="top"|Stałą czasową obwodu RL można wyznaczyć na podstawie zarejestrowanego przebiegu nieustalonego bez znajomości wartości rezystancji i indukcyjności. Zauważmy, że dla prąd cewki przyjmuje wartość | |valign="top"|Stałą czasową obwodu RL można wyznaczyć na podstawie zarejestrowanego przebiegu nieustalonego bez znajomości wartości rezystancji i indukcyjności. Zauważmy, że dla prąd cewki przyjmuje wartość | ||
Wersja z 11:57, 7 wrz 2006
![]() |
Wykład 7. Metoda równań różniczkowych w rozwiązaniu stanu nieustalonego w obwodach elektrycznych |
![]() |
Równania obwodu w stanie ustalonym
|
Zadania sprawdzające
Napisać równanie stanu dla obwodu o strukturze przedstawionej na rysunku
Z praw Kirchhoffa napisanych dla obwodu z rysunku wynika
Określić przebieg czasowy napięcia na kondensatorze w stanie nieustalonym w obwodzie przedstawionym na rysunku Przyjąć następujące wartości parametrów: .
Warunki początkowe w obwodzie wynikają ze stanu ustalonego obwodu przed przełączeniem, który wobec wymuszenia stałego ma postać uproszczoną przedstawioną na rysunku Schemat obwodu w stanie ustalonym przed przełączeniem dla wymuszenia stałego
Schemat obwodu w stanie ustalonym po przełączeniu
Schemat obwodu w stanie przejściowym po przełączeniu
Stała czasowa obwodu jest więc równa . |