MN08LAB: Różnice pomiędzy wersjami
mNie podano opisu zmian |
m MN Ćwiczenia 8 moved to MN08LAB |
(Brak różnic)
|
Wersja z 11:20, 9 wrz 2006
Ćwiczenia: układy liniowe z macierzami rzadkimi
Ćwiczenie: Metoda Richardsona
Jedną z najprostszych klasycznych metod iteracyjnych dla równania jest metoda Richardsona, zadana wzorem
gdzie jest pewnym parametrem. Gdy , mamy do czynienia ze zwykłą metodą iteracji prostej, która najczęściej nie będzie zbieżna, dlatego wybór parametru jest kluczowy dla skuteczności metody.
Dla symetrycznej, dodatnio określonej, sprawdź przy jakich założeniach o metoda będzie zbieżna do rozwiązania z dowolnego wektora startowego i oceń szybkość tej zbieżności.
Testuj na macierzy jednowymiarowego laplasjanu różnych wymiarów. Jak najefektywniej zaimplementować mnożenie przez ?
Ćwiczenie
Zaimplementuj operacje:
- mnożenia macierzy przez wektor ,
- wyłuskania wartości elementu ,
- zmiany wartości pewnego zerowego wyrazu macierzy na niezerową,
jeśli macierz jest zadana w formacie
- AIJ,
- CSC,
- CSR.
Przetestuj dla kilku macierzy z kolekcji MatrixMarket.
Ćwiczenie
Jak tanio rozwiązywać układ równań z macierzą cykliczną trójdiagonalną, tzn.
Dla uproszczenia załóżmy, że macierz jest dodatnio określona i symetryczna.
Zaimplementuj opracowaną metodę korzystając z BLASów i LAPACKa.
Ćwiczenie: CGNE
Ktoś mógłby sugerować, że skoro CG działa tylko dla macierzy symetrycznych, to dowolny układ z macierzą nieosobliwą można transformować do równoważnego mu układu równań normalnych,
którego macierz jest już oczywiście macierzą symetryczną i dodatnio określoną.
Wskaż potencjalne wady tej metody i podaj sposób jej implementacji.