Logika i teoria mnogości/Wykład 5: Para uporządkowana, iloczyn kartezjański, relacje, domykanie relacji, relacja równoważności, rozkłady zbiorów: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Matiunreal (dyskusja | edycje)
Nie podano opisu zmian
Kubakozik (dyskusja | edycje)
Linia 891: Linia 891:


</div></div>
</div></div>
==Iloczyn kartezjański i podobne konstrukcje==
{{zainteresowani|||
W definicji 2.1 zaprezentowanej w rozdziale 2 (patrz '''<u>definicja 2.1.</u>''') jest pewna nieścisłość. Konstrukcja iloczynu
kartezjańskiego odwołuje się do aksjomatu wyróżniania w wersji nieuprawomocnionej.
Konstrukcja którą zobaczą państwo w tym rozdziale usuwa tą poprzednią niedogodność.
'''Twierdzenie 5.1.'''
Dla dowolnych dwóch zbiorów <math>\displaystyle x</math> i <math>\displaystyle y</math> istnieje zbiór <math>\displaystyle x\times y</math> zawierający
wszystkie pary postaci <math>\displaystyle (w,z)</math> gdzie <math>\displaystyle w\in x</math> i <math>\displaystyle z\in y</math>.
'''Dowód'''
Ustalmy dwa dowolne zbiory <math>\displaystyle x</math> i <math>\displaystyle y</math>. Jeśli <math>\displaystyle x=\emptyset</math> lub <math>\displaystyle y=\emptyset</math> to
<math>\displaystyle x\times y = \emptyset</math> istnieje na podstawie aksjomatu zbioru pustego. W przeciwnym
przypadku <math>\displaystyle x\cup y</math> jest zbiorem jednoelementowym <math>\displaystyle \{z\}</math> to <math>\displaystyle x\times
y=\{\{\{z\}\}\}</math> istnieje na podstawie aksjomatu pary. W dalszej częsci dowodu
zakładamy że zbiory <math>\displaystyle x</math> i <math>\displaystyle y</math> są niepuste i że <math>\displaystyle x\cup y</math> ma więcej niż jeden element.
Na podstawie aksjomatu zbioru potęgowego, aksjomatu unii i aksjomatu wycinania
następujące zbiory istnieją:
<center><math>\displaystyle \aligned A &=\{z\in\mathcal{P}(x)\,|\, \exists w\; z =\{w\}\}, \\
B &=\{z\in\mathcal{P}(x\cup y)\,|\, \exists w \exists v\; (w \neq v \land z=\{v,w\})\},\\
C &=\{z\in\mathcal{P}(\mathcal{P}(y))\,|\, \exists v\; z=\{\{v\}\}=(v,v)\}.
\endaligned</math></center>
Nasze założenia gwarantują, że żaden z powyższych zbiorów nie jest pusty. Kontynuując
możemy stworzyć
<center><math>\displaystyle \aligned D_0 &=\{z\in\mathcal{P}(A\cup B)\,|\, \exists w \exists v\; w\neq v \land
z=\{\{w\},\{w,v\}\}=(w,v)\},
\endaligned</math></center>
w którym to zbiorze mamy pewność, że <math>\displaystyle w</math> jest elementem <math>\displaystyle x</math>. Kontynuujemy definiując
<center><math>\displaystyle \aligned D_0' &=\{z\in\mathcal{P}(D_0\cup C)\,|\, \exists w \exists v\; w\neq v \land
z=\{(w,v),(v,v)\}\},
\endaligned</math></center>
gdzie mamy pewność, że <math>\displaystyle w</math> jest elementem <math>\displaystyle x</math>, a <math>\displaystyle v</math> elementem <math>\displaystyle y</math>, oraz
<center><math>\displaystyle \aligned D_0'' &=\{z\in\mathcal{P}(D_0\cup C)\,|\, \exists w \exists v\; w\neq v \land
z=\{(w,v),(w,w )\}\},
\endaligned</math></center>
gdzie mamy pewność, że <math>\displaystyle w\in A\cap B</math>. Kończąc
<center><math>\displaystyle \aligned x\times y &=\{z\in\bigcup D_0' \,|\, \exists w \exists v\; w\neq v \land
z=(w,v)\}\cup \{z\in\bigcup D_0'' \,|\, \exists w\; z=(w,w)\}.
\endaligned</math></center>
'''Twierdzenie 5.2.'''
Jeśli <math>\displaystyle x,y</math> i <math>\displaystyle z</math> są zbiorami i <math>\displaystyle z\subseteq x\times y</math> to zbiorem jest również ogół
<math>\displaystyle v</math> takich, że istnieje <math>\displaystyle w</math> spełniające <math>\displaystyle (v,w)\in z</math>. Zbiór takich <math>\displaystyle v</math> oznaczamy
przez <math>\displaystyle \pi_1(z)</math> i nazywamy projekcją na pierwszą współrzędną.
'''Dowód'''
Zbiór <math>\displaystyle \pi_1(z)</math> istnieje na podstawie aksjomatów ZF i jest równy:
<center><math>\displaystyle \pi_1(z) = \bigcup\{w\in\bigcup z\,|\, \exists u\; w=\{u\}\}.
</math></center>
W tej chwili jesteśmy gotowi dowieść własność zapowiedzianą w <u>'''Wykład. AKS</u>''' Dla
dowolnej formuły <math>\displaystyle \varphi'</math> nie posiadającej zmiennych wolnych innych niż <math>\displaystyle z'</math> i
<math>\displaystyle x_1'</math> następująca formuła jest prawdą
<center><math>\displaystyle \forall x_1' \forall x' \exists y' \forall z'\; z'\in y' \iff (z'\in x' \land
\varphi').
</math></center>
Aby dowieść tą własność ustalmy dowolną formułę <math>\displaystyle \varphi'</math> i dowolny zbiór <math>\displaystyle x_1'</math>.
Stosujemy aksjomat wyróżniania do <math>\displaystyle x=x\times \{x_1'\}</math>&nbsp;(który istnieje na mocy
Twierdzenia 5.1 (patrz '''<u>twierdzenie 5.1.</u>''') i do formuły
<center><math>\displaystyle \exists z' \exists x_1'\; z=(z',x_1')\land\varphi'
</math></center>
otrzymując zbiór <math>\displaystyle y</math>. Wymagany zbiór <math>\displaystyle y'</math> istnieje na mocy
Twierdzenia 5.2 (patrz '''<u>twierdzenie 5.2.</u>''') i jest równy <math>\displaystyle \pi_1(y)</math>.
Przykładem zastosowania powyższego twierdzenia może być otrzymanie drugiej projekcji
z iloczynu kartezjańskiego. Aby otrzymać <math>\displaystyle \pi_2(z)</math> stosujemy powyższe twierdzenie do
<math>\displaystyle x_1'=z</math>, <math>\displaystyle x=\bigcup\bigcup{z}</math> i wyrażenia <math>\displaystyle \varphi'</math> mówiącego <math>\displaystyle \exists w\;
(w,z')\in x_1'</math>.
}}

Wersja z 14:29, 16 wrz 2006

Para uporządkowana

Bardzo często będziemy chcieli mieć do czynienia ze zbiorem, który niesie w sobie informacje o dwóch innych zbiorach, informacje tak udatnie zakodowaną aby można było odzyskać z niej każdą z jego składowych. Do tego celu wprowadzimy zbiór nazywany parą uporządkowaną dwóch innych zbiorów.

Definicja 1.1.

Niech x oraz y będą zbiorami. Przez parę uporządkowaną (x,y) rozumiemy zbiór

{{x},{x,y}}

Parę uporządkowaną można zdefiniować inaczej na wiele sposobów. Chodzi jednak o to aby ze zbioru który jest parą można było odzyskać jednoznacznie każdą z jego składowych. Tak więc moglibyśmy zaakceptować każdą inną inną definicję pod warunkiem, że będzie spełnione następujące twierdzenie:

Twierdzenie 1.2.

Dla dowolnych zbiorów a,b,c,d zachodzi:

Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle (a,b) = (c,d) \Leftrightarrow a=c \hspace*{0.1mm} \wedge b= d}

Dowód

Dowód przeprowadzimy tylko ze strony lewej do prawej bo w odwrotnym kierunku jest to fakt oczywisty. Niech zatem dwie pary (a,b) i (c,d) będą równe. Ponieważ {a}(a,b) więc {a}(c,d). Mamy zatem {a}={c} lub {a}={c,d}. W pierwszym przypadku a=c ale w drugim również jest tak, mamy bowiem, że c{a}. Pierwszą część twierdzenia mamy za sobą bo już wiemy, że pierwsze współrzędne równych par są równe.

(a,b)=(a,d)

Następnie przeprowadzamy dowód przez przypadki. Jeżeli jest tak, że a=b to (a,b)={{a}}. Zatem {{a}}={{a},{a,d}} co daje, że {a,d}={a} a zatem d=a. W przeciwnym przypadku gdy ab mamy, że {a,b}{{a},{a,d}}. Daje to dwie możliwości albo {a,b}={a} co nie może mieć miejsca bo mielibyśmy, że a=b, albo zaś {a,b}={a,d}. To drugie prowadzi do naszej tezy b=d.

Ćwiczenie 1.3

Dla każdej pary x=(a,b) udowodnij, że

x=a.
Rozwiązanie

Ćwiczenie 1.4

Udowodnij, że dla dowolnej pary uporządkowanej x zbiór

(𝒫(x)𝒫())

jest pusty gdy współrzędne par są różne, a w przeciwnym przypadku jest zbiorem jednoelementowym zawierającym współrzędną pary x.

Rozwiązanie

Ćwiczenie 1.5

{{{3}}}
Rozwiązanie

Iloczyn kartezjański

Zanim wprowadzimy definicję zbioru wszystkich par uporządkowanych elementów dwóch zbiorów (zwanego dalej iloczynem kartezjańskim) należy nam się krótka dyskusja. Otóż niech xX oraz yY. Łatwo zauważyć, że zarówno {x,y} jak i {x} są podzbiorami XY. Zatem {x,y}𝒫(XY) oraz {x}𝒫(XY). Więc {{x},{x,y}}𝒫(XY) co daje, że (x,y)𝒫(𝒫(XY)).

Istnienie i konstrukcja iloczynu kartezjańskiego zostało dokładnie omówione w dodatkowym rozdziale 5 znajdującym się na końcu. Proponuje przestudiowanie dodatkowego rozdziału dopiero po zapoznaniu się z rozdziałami wcześniejszymi pomimo braku precyzji w następnej definicji.

Definicja 2.1.

Niech x,y będą zbiorami. Iloczynem kartezjańskim (produktem) x×y nazywamy zbiór

{z𝒫(𝒫(xy)):axby(a,b)=z}

Będziemy używać specjalnej notacji x2 na zbiór x×x.

Ćwiczenie 2.2

Pokaż następujące elementarne własności iloczynu kartezjańskiego:

Parser nie mógł rozpoznać (nieznana funkcja „\aligned”): {\displaystyle \displaystyle \aligned x \times \emptyset &= \emptyset \quad \mbox{(2.1)}\\ x \times (y \cup z) &= (x \times y) \cup (x \times z) \quad \mbox{(2.2)}\\ x \times (y \cap z) &= (x \times y) \cap (x \times z) \quad \mbox{(2.3)}\\ x \times (y \setminus z) &= (x \times y) \setminus (x \times z) \quad \mbox{(2.4)} \endaligned}
Rozwiązanie

Ćwiczenie 2.3

Produkt kartezjański × jest monotoniczny ze względu na każdą współrzędną osobno to znaczy:

Parser nie mógł rozpoznać (nieznana funkcja „\aligned”): {\displaystyle \displaystyle \aligned x \subset y & \hspace*{0.1mm} \Rightarrow & (x \times z) \subset (y \times z) \quad \mbox{(2.5)}\\ x \subset y & \hspace*{0.1mm} \Rightarrow & (z \times x) \subset (z \times y) \quad \mbox{(2.6)} \endaligned}
Rozwiązanie

Ćwiczenie 2.4

Sprawdź, czy dla dowolnych zbiorów A,B,C, prawdziwa jest następująca implikacja

A×B=A×CB=C
Rozwiązanie

Relacje

Definicja 3.1.

Relacją nazywamy każdy podzbiór iloczynu x×y

Operacje na relacjach:

Definicja 3.2.

Niech RA×B oraz SB×C.

Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle S \circ R  := \left\{(x,z)\in A \times C : \exists_{y\in B} (x,y)\in R \hspace*{0.1mm} \wedge (y,z)\in S \right\}}

R1:={(y,x)B×A:(x,y)R}
RL:={xA:yB(x,y)R}
RP:={yB:xA(x,y)R}

Ćwiczenie 3.3

Niech relacja RA×B,SB×C oraz TC×D. Pokazać elementarne własności operacji na relacjach:

T(SR)=(TS)R(3.1)(SR)1=R1S1(3.2)RRL×RP(3.3)(SR)LRL(3.4)(SR)PSP(3.5)(R1)L=RP(3.6)
Rozwiązanie

Ćwiczenie 3.4

Niech relacja RB×C,SB×C oraz TA×B. Pokaż własności:

(RS)1=R1S1(3.7)(RS)1=R1S1(3.8)(R1)1=R(3.9)(RS)T=(RT)(ST)(3.10)(RS)T(RT)(ST)(3.11)
Rozwiązanie

Ćwiczenie 3.5

Podaj przykład relacji dla których poniższa równość nie jest prawdziwa.

(RS)T=(RT)(ST)
Rozwiązanie

Ćwiczenie 3.6

Udowodnij, że zbiór A jest relacją wtedy i tylko wtedy gdy

A(A)×(A)
Rozwiązanie

Relacje równoważności

W tym podrozdziale poznamy ważną klasę (zbiór) relacji zwaną klasą relacji równoważności(w innych podręcznikach mogą się państwo spotkać z nazwą relacja abstrakcji). Relacje takie będą służyły do definiowania pojęć abstrakcyjnych o czym przekonamy się w wielu miejscach tego i innych wykładów. Bardzo dobrym ćwiczeniem pokazującym abstrakcyjne metody definiowania pojęć będzie wykład 8 w którym zaprzęgniemy relacje abstrakcji do definiowania liczb.

Rozpoczynamy rozdział od koniecznej definicji.

Definicja 4.1.

Dla zbioru X definiujemy relację 1XX×X jako {zX×X:xX(x,x)=z}.

Definicja 4.2.

Relację RX×X nazywamy relacją równoważnością o polu X jeżeli:

  • zawiera relacje 1X (zwrotność R)
  • R1R (symetria R)
  • RRR (przechodniość R)

Ćwiczenie 4.3

Pokazać, że definicje zwrotności, symetryczności i przechodniości relacji o polu X są odpowiednio równoważne następującym własnościom:

  • xX(x,x)R
  • x,yX(x,y)R(y,x)R
  • x,y,zX(x,y)R(y,z)R(x,z)R
Rozwiązanie

Definicja 4.4.

Niech R będzie relacją równoważności o polu X. Klasą równoważności elementu xX jest zbiór

[x]R:={yX:(x,y)R}

Definicja 4.5.

Zbiór klas równoważności relacji R będący elementem zbioru 𝒫(𝒫(X×X)) oznaczamy przez X/R.

Twierdzenie 4.6.

Niech R będzie relacją równoważności o polu X. Następujące warunki są równoważne

  1. [x]R[y]R
  2. [x]R=[y]R
  3. (x,y)R

Dowód

Pokażemy, że (1)(2). Niech wspólny element dwóch klas [x]R oraz [y]R nazywa się z. Ze względu na pełną symetrię tezy wystarczy pokazać, że [x]R[y]R. Niech zatem p[x]R. Mamy więc (x,p)R. Z założenia jest również (y,z)R oraz (x,z)R. Z symetrii otrzymujemy (z,x)R. Zatem (y,z)R i (z,x)R i (x,p)R. Natychmiast z przechodniości otrzymujemy, że (y,p)R.
Pokażemy, że (2)(3). Ze zwrotności mamy, że y[y]R co z założenia (2) daje y[x]R a to tłumaczy się na (x,y)R. Pokażemy, że (3)(1). Wystarczy pokazać, że wspólnym elementem klas [x]R oraz [y]R jest y. Dla pierwszej z nich wynika to z założenia (3) a dla drugiej ze zwrotności R.

W następnym twierdzeniu zobaczymy jak rodzina relacji równoważności jest odporna na przecinanie. Pokażemy mianowicie, że przecięcie dowolnej liczby relacji równoważności jest nadal relacją równoważności.

Twierdzenie 4.7.

Niech κ będzie pewną rodziną (zbiorem) relacji równoważności o tym samym polu X. Mamy że:

  1. κ jest relacją równoważności o polu X.
  2. [x]κ={[x]R:Rκ}

Dowód

(1) Zwrotność κ jest oczywista ponieważ 1X zawiera się w każdej relacji rodziny κ. Symetria. Weźmy (x,y)κ. Dla każdej relacji Rκ jest (x,y)R. Z symetrii każdej R jest więc (y,x)R co daje (y,x)κ. Przechodniość. Niech (x,y)κ oraz (y,z)κ. Dla każdej relacji Rκ jest więc (x,y)R i (y,z)R. Z przechodniości każdej relacji R mamy, że (x,z)R co daje (x,z)κ.
(2) Niech y[x]κ. Mamy zatem, że (x,y)κ co daje (x,y)R dla każdej relacji Rκ. To zaś daje, że y[x]R dla każdej Rκ co jest równoważne z y{[x]R:Rκ}.

W szczególności przecięcie wszystkich relacji równoważności o polu X daje 1X. Jest ona najsilniejszą relacją równoważności. Najsłabszą jest X2.

Rozkłady zbiorów

Definicja 4.8.

Niech X. Rodzinę r𝒫(𝒫(X)) nazywamy rozkładem zbioru X gdy

  1. CrC
  2. r=X
  3. Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle (C \in r \hspace*{0.1mm} \wedge D \in r \hspace*{0.1mm} \wedge C \neq D )\hspace*{0.1mm} \Rightarrow C\cap D =\emptyset}

Lemat 4.9.

Dla relacji równoważności R o polu X zbiór X/R jest rozkładem X.

Dowód

(1) Każda klasa jest niepusta bo zawiera element, który ją wyznacza. (2)X/RX bo każda klasa jest podzbiorem X. Odwrotnie każdy x[x]RX/R. (3) Dwie klasy gdy są rożne muszą być rozłączne co udowodniliśmy w twierdzeniu 4.6 (patrz twierdzenie 4.6.).

Definicja 4.10.

Niech r będzie rozkładem zbioru X. Definiujemy relacje RrX×X następująco:

(x,y)Rr wtw Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle \exists_{C\in r} \;\; x \in C \; \hspace*{0.1mm} \wedge \; y\in C }

Lemat 4.11.

Dla rozkładu r𝒫(𝒫(X)) relacja Rr jest:

  1. równoważnością
  2. X/Rr=r

Dowód

(1) Relacja Rr jest zwrotna każdy bowiem xX musi leżeć w pewnym zbiorze C rozkładu r. Symetria Rr nie wymaga dowodu. Przechodniość Rr. Niech (x,y)Rr i (y,z)Rr. Istnieją zatem dwa zbiory C i D rozkładu r takie, że x,yC oraz y,zD. Przecięcie C i D jest więc niepuste zatem C=D co daje tezę (x,z)Rr.
(2) Inkluzja w prawo . Niech CX/Rr. Klasa C jest zatem wyznaczona przez pewien element x taki, że C=[x]Rr. Niech Dr będzie zbiorem rozkładu r do którego należy x. Łatwo wykazać, że C=D. Inkluzja w lewo . Niech Cr. C jest niepusty wiec istnieje xC. Klasa [x]Rr=C.

Ćwiczenie 4.12

{{{3}}}
Rozwiązanie

Ćwiczenie 4.13

{{{3}}}
Rozwiązanie

Domykanie relacji

W praktyce matematycznej często potrzebne jest rozważanie domknięć relacji ze względu na wiele przeróżnych własności. W podrozdziale tym dokonamy charakteryzacji domknięć. Pokażemy między innymi kiedy takie domykanie jest możliwe.

Definicja 4.14.

Niech α będzie rodziną relacji o polu X, czyli niech α𝒫(𝒫(X2)). Rodzina α jest zamknięta na przecięcia gdy

  1. X2α
  2. jeżeli αα to αα

Poniżej podamy definicję domknięcia relacji w pewnej klasie (zbiorze) relacji. Definiujemy intuicyjnie najmniejszą relacje zawierającą daną należącą do klasy.

Definicja 4.15.

Relacja SX2 jest domknięciem relacji RX2 w klasie (zbiorze) relacji α gdy:

  1. RS
  2. Sα
  3. dla każdej relacji T jeżeli RT oraz Tα to ST

Lemat 4.16.

Domknięcie relacji (w dowolnej klasie) jeżeli istnieje to jest jedyne.

Dowód

Gdyby istniały dwa domknięcia pewnej relacji to ze względu na warunek (3) wzajemnie by się zawierały.

Twierdzenie 4.17.

Następujące warunki są równoważne:

  1. Klasa relacji α jest domknięta na przecięcia.
  2. Każda relacja ma domknięcie w klasie relacji α.

Dowód

(1)(2). Niech R będzie relacją. Utwórzmy zbiór relacji α jako Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle \left\{S\in\mathcal{P} (X^2) : R\subset S \hspace*{0.1mm} \wedge S\in\alpha \right\}} . Takie α nie jest puste bowiem relacja totalna X2 należy do α. Pokażmy, że α jest domknięciem R w α. Istotnie Rα. Z założenia mamy też αα. Minimalność α stwierdzamy przez: niech RS takie że Sα. Takie S musi leżeć w zbiorze α jest więc αS.
(2)(1). Po pierwsze X2 leży w zbiorze α bo wystarczy domknąć X2. Niech α będzie niepustym podzbiorem α. Niech S0 będzie domknięciem α w α. Wiemy, że dla dowolnej relacji S o ile αS i Sα to S0S. Połóżmy za S dowolny element z α. Założenia implikacji pozostają automatycznie spełnione, jest więc tak, że S0S dla dowolnej S wyjętej z α. W takim razie S0α. Ponieważ mamy też αS0 bo S0 było domknięciem jest więc α=S0 a to oznacza, że S0α.

Ćwiczenie 4.18

Pokazać jak wyglądają domknięcia w klasie relacji, zwrotnych, symetrycznych i przechodnich.

Pokazać stosując twierdzenie 4.17 (patrz twierdzenie 4.17.), że nie istnieje domknięcie spójne ani antysymetryczne. (Relacja R jest spójna gdy Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle \forall x,y (x,y) \in R \hspace*{0.1mm} \vee (y,x)\in R} . Relacja R jest antysymetryczna gdy z faktu, że (x,y)R oraz (y,x)R da się pokazać, że x=y)

Rozwiązanie

Ćwiczenie 4.19

Dla relacji R niech Rα, Rβ, Rγ oznaczają odpowiednio zwrotne, symetryczne, przechodnie domknięcie relacji R. Czy prawdą jest że:

  1. dla dowolnej relacji R relacja ((Rα)β)γ jest relacją równoważności
  2. dla dowolnej relacji R zachodzi
((Rα)β)γ=((Rγ)β)α

W każdym z powyższych przypadków proszę podać dowód lub kontrprzykład.

Rozwiązanie