PF Moduł 10: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Daniel-PW (dyskusja | edycje)
Nie podano opisu zmian
Daniel-PW (dyskusja | edycje)
Nie podano opisu zmian
Linia 26: Linia 26:


<math>F(v)=\left(\frac{m_0}{2\cdot \pi\cdot k\cdot T} \right)^{3/2}\cdot exp\left(-\frac{m_0\cdot v^2}{2\cdot k\cdot T} \right)\cdot 4\cdot \pi \cdot v^2</math>
<math>F(v)=\left(\frac{m_0}{2\cdot \pi\cdot k\cdot T} \right)^{3/2}\cdot exp\left(-\frac{m_0\cdot v^2}{2\cdot k\cdot T} \right)\cdot 4\cdot \pi \cdot v^2</math>
|}
<hr width="100%">
{| border="0" cellpadding="4" width="100%"
|width="450px" valign="top"|[[Grafika:PF_M10_Slajd3.png]]
|valign="top"|Wyprowadzenie wzoru można znaleźć w literaturze.
<math>F(v)=\left(\frac{m_0}{2\cdot \pi\cdot k\cdot T} \right)^{3/2}\cdot exp\left(-\frac{m_0\cdot v^2}{2\cdot k\cdot T} \right)\cdot 4\cdot \pi \cdot v^2</math>
Co jest charakterystyczne w tym rozkładzie <math>F(v)\,</math> ? Jest to konieczność wystąpienia maksimum ze względu na iloczyn rosnącej parabolicznie i malejącej wykładniczo zależności od <math>v\,</math> . (Przeanalizuj dokładnie trzy człony wzoru na <math>F(v)\,</math>  . Pierwszy, to czynnik normalizacyjny zawierający wyłącznie wartości stałe, drugi - to człon wykładniczy, ale z ujemną wartością w wykładniku, czyli malejący ze wzrostem prędkości i równy jedynce dla  , ostatni - rosnący paraboliczne ze wzrostem prędkości. Rezultat jest zobrazowany na wykresie  maxwellowskiej funkcji rozkładu prędkości cząsteczek azotu przy temperaturach: <math>73 K\, (-200^\circ C)\,</math> , <math>273 K\, (0^\circ C)\,</math> , <math>473 K\, (200^\circ C)\,</math>. Gdy temperatura rośnie maksimum krzywej rozkładu przesuwa się w stronę większych prędkości i krzywa ulega spłaszczeniu. Pole pod krzywą równe jest całkowitej liczbie cząsteczek w próbce i pozostaje stałe niezależnie od temperatury.
Rozkład prędkości cząsteczek w danej temperaturze zależy od masy cząsteczek. Im mniejsza masa tym większa liczba cząsteczek o dużych prędkościach.

Wersja z 15:22, 24 sie 2006

Wprowadzenie

Termodynamika statystyczna opisuje układy wielu cząsteczek, z jakich składają się ciała za pomocą wielkości średnich (średnia prędkość, średnia droga, średnia energia itd.) oraz tzw. rozkładów statystycznych. Wiąże mikroskopowe, dane statystyczne o cząsteczkach z makroskopowymi parametrami stanu. Posługuje się rachunkiem prawdopodobieństwa i pozwala wyznaczać najbardziej prawdopodobne kierunki procesów.


Pomimo, że
  • Identyczne cząsteczki są w chaotycznym ruchu
  • Wszystkie kierunki ich ruchu są jednakowo prawdopodobne
  • Temperatura jest miarą ich średniej energii kinetycznej
  • Prędkości zmieniają się w wyniku zderzeń
  • Prędkości poszczególnych cząsteczek są różne w szerokim zakresie wartości.

To

Rozkład Maxwella opisuje prędkości cząsteczek gazu doskonałego będącego w stanie równowagi termodynamicznej, na który nie działają siły zewnętrzne. Pozwala obliczyć charakterystyczne wartości wielkości średnich: średnią prędkość kwadratową, średnią prędkość i prędkość najbardziej prawdopodobną oraz liczbę cząsteczek o prędkościach zawartych w przedziale wartości od v do v+dv.

Jeżeli mamy N cząsteczek, to liczba dNv cząsteczek o prędkościach w przedziale od v do v+dv będzie określona wzorem dNv=NF(v)dv , gdzie F(v) dane jest wzorem

F(v)=(m02πkT)3/2exp(m0v22kT)4πv2


Wyprowadzenie wzoru można znaleźć w literaturze.

F(v)=(m02πkT)3/2exp(m0v22kT)4πv2

Co jest charakterystyczne w tym rozkładzie F(v) ? Jest to konieczność wystąpienia maksimum ze względu na iloczyn rosnącej parabolicznie i malejącej wykładniczo zależności od v . (Przeanalizuj dokładnie trzy człony wzoru na F(v) . Pierwszy, to czynnik normalizacyjny zawierający wyłącznie wartości stałe, drugi - to człon wykładniczy, ale z ujemną wartością w wykładniku, czyli malejący ze wzrostem prędkości i równy jedynce dla , ostatni - rosnący paraboliczne ze wzrostem prędkości. Rezultat jest zobrazowany na wykresie maxwellowskiej funkcji rozkładu prędkości cząsteczek azotu przy temperaturach: 73K(200C) , 273K(0C) , 473K(200C). Gdy temperatura rośnie maksimum krzywej rozkładu przesuwa się w stronę większych prędkości i krzywa ulega spłaszczeniu. Pole pod krzywą równe jest całkowitej liczbie cząsteczek w próbce i pozostaje stałe niezależnie od temperatury.

Rozkład prędkości cząsteczek w danej temperaturze zależy od masy cząsteczek. Im mniejsza masa tym większa liczba cząsteczek o dużych prędkościach.