Języki, automaty i obliczenia/Ćwiczenia 13: Złożoność obliczeniowa.: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Rogoda (dyskusja | edycje)
Matiunreal (dyskusja | edycje)
Nie podano opisu zmian
Linia 27: Linia 27:
# Taśma nr <math>\displaystyle 1</math> jest tylko do odczytu. Mamy na niej słowo <math>\displaystyle 3^k</math>.
# Taśma nr <math>\displaystyle 1</math> jest tylko do odczytu. Mamy na niej słowo <math>\displaystyle 3^k</math>.
# Rozpocznij od zapisania słowa <math>\displaystyle 11</math> na taśmie nr <math>\displaystyle 2</math> i słowa <math>\displaystyle 22</math> na taśmie nr <math>\displaystyle 3</math>
# Rozpocznij od zapisania słowa <math>\displaystyle 11</math> na taśmie nr <math>\displaystyle 2</math> i słowa <math>\displaystyle 22</math> na taśmie nr <math>\displaystyle 3</math>
# Przepisz słowa na taśmę nr <math>\displaystyle 4</math> według kolejności taśm <math>\displaystyle 2,3,1</math>.
# {{kotwica|prz.3|}}Przepisz słowa na taśmę nr <math>\displaystyle 4</math> według kolejności taśm <math>\displaystyle 2,3,1</math>.
# Sprawdź na taśmie nr <math>\displaystyle 4</math> czy <math>\displaystyle k=i\cdot j</math>. Jeśli tak to akceptuj. Inaczej krok następny.
# Sprawdź na taśmie nr <math>\displaystyle 4</math> czy <math>\displaystyle k=i\cdot j</math>. Jeśli tak to akceptuj. Inaczej krok następny.
# Dopisz symbol <math>\displaystyle 1</math> na taśmie nr <math>\displaystyle 2</math>. Gdy powstało słowo dłuższe niż <math>\displaystyle k</math> dopisz symbol <math>\displaystyle 2</math> na taśmie nr <math>\displaystyle 3</math> a słowo
# Dopisz symbol <math>\displaystyle 1</math> na taśmie nr <math>\displaystyle 2</math>. Gdy powstało słowo dłuższe niż <math>\displaystyle k</math> dopisz symbol <math>\displaystyle 2</math> na taśmie nr <math>\displaystyle 3</math> a słowo na taśmie nr <math>\displaystyle 2</math> usuń i zapisz na niej słowo <math>\displaystyle 11</math>.
na taśmie nr <math>\displaystyle 2</math> usuń i zapisz na niej słowo <math>\displaystyle 11</math>.
# Jeśli słowo na taśmie nr <math>\displaystyle 3</math> jest dłuższe niż <math>\displaystyle k</math> to odrzuć. W przeciwnym przypadku przejdź do kroku [[#prz.3|3|]].
# Jeśli słowo na taśmie nr <math>\displaystyle 3</math> jest dłuższe niż <math>\displaystyle k</math> to odrzuć. W przeciwnym przypadku przejdź do kroku [[##setp3|Uzupelnic setp3|]].


Idea tej maszyny jest bardzo prosta. Wykorzystaj taśmy nr <math>\displaystyle 2</math> (licznik 1) i <math>\displaystyle 3</math> (licznik 2) jako liczniki a na taśmie <math>\displaystyle 4</math> wykonuj symulacje.
Idea tej maszyny jest bardzo prosta. Wykorzystaj taśmy nr <math>\displaystyle 2</math> (licznik 1) i <math>\displaystyle 3</math> (licznik 2) jako liczniki a na taśmie <math>\displaystyle 4</math> wykonuj symulacje.

Wersja z 08:35, 24 sie 2006

{Złożoność obliczeniowa. Języki maszyn Turinga i typu (0). Rozstrzygalność.}

ĆWICZENIA 13

Ćwiczenie

W trakcie wykładu rozważaliśmy język

Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle L=\left\{3^k\: : \: k=i\cdot j } dla pewnych Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle i,j> 1\right\} }

wykazując, że L NP .

Uzasadnij, że także
L P .
Wskazówka
Rozwiązanie

Ćwiczenie

Uzasadnij że funkcja s(n)=3n jest konstruowalna pamięciowo.

Wskazówka
Rozwiązanie

Ćwiczenie

Uzasadnij że funkcja s(n)=3n jest konstruowalna pamięciowo.

Wskazówka
Rozwiązanie

Ćwiczenie

Skonstruuj maszynę Turinga rozpoznającą język zadany gramatyką:

SaTb|b,TTa|1
Wskazówka
Rozwiązanie

Ćwiczenie

Przedstaw ideę działania maszyny Turinga rozpoznającej język

L={anb2nc3n:n>1}
Wskazówka
Rozwiązanie

Ćwiczenie

W trakcie wykładu rozważaliśmy zamkniętość klas języków w klasyfikacji Chomsky'ego ze względu na różne działania. Podaj uzasadnienie (ideę konstrukcji) następującego faktu:

Dla dowolnych maszyn Turinga TM1, TM2 istnieje maszyna o własności:

  1. L()=L(TM1)L(TM2)
  2. L()=L(TM1)L(TM2)
Wskazówka
Rozwiązanie

Ćwiczenie

Czy któraś z poniższych list słów ma własność Posta?

  1. (u1,v1)=[a2a2b],(u2,v2)=[b2ba],(u3,v3)=[ab2b]
  2. (u1,v1)=[ab2],(u2,v2)=[a2b]
  3. (u1,v1)=[baabab],(u2,v2)=[ba],(u3,v3)=[abab],(u4,v4)=[aaa]
Rozwiązanie

Ćwiczenie

W definicji problemu Posta zakłada się, że alfabet 𝒜 zawiera co najmniej dwa elementy. Wykaż, że gdy to założenie nie jest spełnione (tzn. 𝒜={1}) problem Posta jest problemem rozstrzygalnym.

Wskazówka
Rozwiązanie

Zadania domowe

Ćwiczenie

Zadanie domowe 2.1 do wykładu 12 polegało na konstrukcji maszyny Turinga 𝒯 akceptującej język:

Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle L_1=\left\{www\: : \: w\in \left\{\circ,\bullet,\star\right\}^*\right\} }

Zmodyfikuj, ewentualnie, tę konstrukcję 𝒯 aby udowodnić L1 P .

Ćwiczenie

Zadanie domowe 2.2 do wykładu 12 polegało na konstrukcji niedeterministycznej maszyny Turinga 𝒩𝒯 akceptującej język:

Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle L_2=\left\{w_1 w_1 w_2 w_2 \dots w_n w_n \: : \: w_i \in \left\{\circ,\bullet\right\}^+, n>0 \right\} }

Zmodyfikuj, ewentualnie, tę konstrukcję 𝒩𝒯 aby udowodnić, że L2 NP .

Podpowiedź: wykorzystaj konstrukcję z wyrocznią. Dla słowa wejściowego w przeprowadź weryfikację w trzech etapach: konstrukcja słów w1,,wn gdzie n<|w| (wyrocznia), sklejanie, weryfikacja czy w=w1w1w2w2wnwn.

Ćwiczenie

Uzasadnij, że jeśli funkcja s(n) jest konstruowalna pamięciowo to obliczenie d1*d2 z definicji konstruowalności pamięciowej (tzn. d1=s01n, d2=s11s(n)w) następuję w conajwyżej c2s(n) krokach gdzie c jest pewną stałą niezależną od n.
Podpowiedź: przeanalizuj ilość możliwych konfiguracji.

Ćwiczenie

Uzasadnij że funkcja n3 jest konstruowalna pamięciowo.

Ćwiczenie

Skonstruuj maszynę Turinga akceptującą słowo u=1n w dokładnie n2 krokach. Jak zmodyfikować konstrukcję maszyny aby akceptowała słowo u dokładnie w 2n krokach?

Ćwiczenie

Wypisz dokładnie wszystkie elementy składowe maszyn Turinga rozpoznających języki zadane gramatykami:

  1. SAbC , AaAb|ε, CbCc|ε
  2. SABACA,AAa|a,Bbb|b,Cc|ε

Ćwiczenie

Wykaż (podając ideę kontrukcji) że dla maszyn Turinga TM1, TM2 istnieje maszyna Turinga rozpoznająca język:

L()={uv:uL(TM1),vL(TM2)}

Ćwiczenie

Czy któraś z poniższych list słów ma własność Posta?

  1. (u1,v1)=[aa2b],(u2,v2)=[ba2a2]
  2. (u1,v1)=[aba],(u2,v2)=[aba2]
  3. (u1,v1)=[aaaa],(u2,v2)=[bba](u3,v3)=[bbb](u4,v4)=[baab]

Ćwiczenie

Udowodnij Twierdzenie 2.1 z wykładu:

Twierdzenie. Dla każdej gramatyki istnieje równoważna gramatyka tego samego typu taka, że każda produkcja, w której występuje symbol terminalny a , jest postaci va .