Test HB3: Różnice pomiędzy wersjami
m Zastępowanie tekstu - "\endaligned" na "\end{align}" |
|||
Linia 53: | Linia 53: | ||
<center><math>\aligned d_{(x_0, y_0)}F&=\frac{\partial F}{\partial | <center><math>\aligned d_{(x_0, y_0)}F&=\frac{\partial F}{\partial | ||
x}(x_0, y)dx+\frac{\partial F}{\partial y}(x_0, y)dy\\&=2x_0 | x}(x_0, y)dx+\frac{\partial F}{\partial y}(x_0, y)dy\\&=2x_0 | ||
dx+2y_0 dy\ | dx+2y_0 dy\end{align} | ||
</math></center> | </math></center> | ||
Linia 61: | Linia 61: | ||
<center><math> | <center><math> | ||
\left\{\aligned 2x_0=0\\2y_0=0,\ | \left\{\aligned 2x_0=0\\2y_0=0,\end{align}\right. | ||
</math></center> | </math></center> | ||
Linia 78: | Linia 78: | ||
<center><math> | <center><math> | ||
\left\{\alignedx_0^2-y_0=0\\y_0^2-x_0=0,\ | \left\{\alignedx_0^2-y_0=0\\y_0^2-x_0=0,\end{align}\right. | ||
</math></center> | </math></center> | ||
Linia 97: | Linia 97: | ||
<center><math> | <center><math> | ||
\aligned d_{(x_0,y_0)}F&=\left(2(x_0^2+y_0^2)2x_0-4x_0\right)dx+\left(2(x_0^2+y_0^2)2y_0+4y_0\right)dy | \aligned d_{(x_0,y_0)}F&=\left(2(x_0^2+y_0^2)2x_0-4x_0\right)dx+\left(2(x_0^2+y_0^2)2y_0+4y_0\right)dy | ||
\\&=4x_0(x_0^2+y_0^2-1)dx+4y_0(x_0^2+y_0^2+1)dy\ | \\&=4x_0(x_0^2+y_0^2-1)dx+4y_0(x_0^2+y_0^2+1)dy\end{align} | ||
</math></center> | </math></center> | ||
Linia 103: | Linia 103: | ||
<center><math> | <center><math> | ||
\left\{\aligned x_0(x_0^2+y_0^2-1)=0\\ y_0(x_0^2+y_0^2+1)=0,\ | \left\{\aligned x_0(x_0^2+y_0^2-1)=0\\ y_0(x_0^2+y_0^2+1)=0,\end{align}\right. | ||
</math></center> | </math></center> | ||
Linia 128: | Linia 128: | ||
<center><math> | <center><math> | ||
\aligned d_{(x,y,z)}F&=\frac{\partial F}{\partial x}(x,y,z)dx+\frac{\partial F}{\partial y}(x,y,z)dy+\frac{\partial | \aligned d_{(x,y,z)}F&=\frac{\partial F}{\partial x}(x,y,z)dx+\frac{\partial F}{\partial y}(x,y,z)dy+\frac{\partial | ||
F}{\partial z}(x,y,z)dz\\&= 2xdx+2ydy+2zdz\ | F}{\partial z}(x,y,z)dz\\&= 2xdx+2ydy+2zdz\end{align} | ||
</math></center> | </math></center> | ||
Linia 168: | Linia 168: | ||
<center><math> | <center><math> | ||
\aligned &&x=y=0, z\neq0,\\ &\text{lub}&\\ &&x=z=0, y\neq0, \\ &\text{lub}& \\ &&y=z=0,x\neq0,\ | \aligned &&x=y=0, z\neq0,\\ &\text{lub}&\\ &&x=z=0, y\neq0, \\ &\text{lub}& \\ &&y=z=0,x\neq0,\end{align} | ||
</math></center> | </math></center> | ||
Linia 195: | Linia 195: | ||
<center><math>\left\{\aligned 4x(x^2+y^2+z^2)=3yz\\ 4y(x^2+y^2+z^2)=3xz\\ | <center><math>\left\{\aligned 4x(x^2+y^2+z^2)=3yz\\ 4y(x^2+y^2+z^2)=3xz\\ | ||
4z(x^2+y^2+z^2)=3xy\ | 4z(x^2+y^2+z^2)=3xy\end{align} \right. | ||
</math></center> | </math></center> | ||
Linia 202: | Linia 202: | ||
<center><math> | <center><math> | ||
\left\{\aligned x^2&=y^2\\y^2&=z^2\\z^2&=x^2,\ | \left\{\aligned x^2&=y^2\\y^2&=z^2\\z^2&=x^2,\end{align}\right. | ||
</math></center> | </math></center> | ||
Linia 437: | Linia 437: | ||
<center><math> | <center><math> | ||
\left\{\aligned 0&=F_1(x, f_1(x), f_2 (x))\\ 0&=F_1(x, f_1(x), f_2 (x)).\ | \left\{\aligned 0&=F_1(x, f_1(x), f_2 (x))\\ 0&=F_1(x, f_1(x), f_2 (x)).\end{align} \right. | ||
</math></center> | </math></center> | ||
Linia 448: | Linia 448: | ||
y_2}\frac{df_2}{dx}\\&= \frac{\partial F_1}{\partial | y_2}\frac{df_2}{dx}\\&= \frac{\partial F_1}{\partial | ||
x}+\frac{\partial F_1}{\partial y_1}f_1'+\frac{\partial | x}+\frac{\partial F_1}{\partial y_1}f_1'+\frac{\partial | ||
F_1}{\partial y_2}f_2'\ | F_1}{\partial y_2}f_2'\end{align} | ||
</math></center> | </math></center> | ||
Linia 459: | Linia 459: | ||
y_2}\frac{df_2}{dx}\\&= \frac{\partial F_2}{\partial | y_2}\frac{df_2}{dx}\\&= \frac{\partial F_2}{\partial | ||
x}+\frac{\partial F_2}{\partial y_1}f_1'+\frac{\partial | x}+\frac{\partial F_2}{\partial y_1}f_1'+\frac{\partial | ||
F_2}{\partial y_2}f_2'.\ | F_2}{\partial y_2}f_2'.\end{align} | ||
</math></center> | </math></center> | ||
Linia 470: | Linia 470: | ||
F_2}{\partial x}=\frac{\partial F_2}{\partial | F_2}{\partial x}=\frac{\partial F_2}{\partial | ||
y_1}f_1'+\frac{\partial F_2}{\partial y_2}f_2' . | y_1}f_1'+\frac{\partial F_2}{\partial y_2}f_2' . | ||
\ | \end{align}\right. | ||
</math></center> | </math></center> | ||
Linia 617: | Linia 617: | ||
<center><math> | <center><math> | ||
\left\{\aligned &\frac{\partial F}{\partial x_1}(a, f(a))=0 \\ &\frac{\partial F}{\partial x_2}(a, f(a))=0\\ | \left\{\aligned &\frac{\partial F}{\partial x_1}(a, f(a))=0 \\ &\frac{\partial F}{\partial x_2}(a, f(a))=0\\ | ||
&\vdots \\ &\frac{\partial F}{\partial x_n}(a, f(a))=0.\ | &\vdots \\ &\frac{\partial F}{\partial x_n}(a, f(a))=0.\end{align} \right. | ||
</math></center> | </math></center> | ||
}} | }} | ||
Linia 650: | Linia 650: | ||
x}f'+\bigg(\frac{\partial^2 F}{\partial x\partial | x}f'+\bigg(\frac{\partial^2 F}{\partial x\partial | ||
y}+\frac{\partial^2 F}{\partial y^2}f'\bigg)f'+\frac{\partial | y}+\frac{\partial^2 F}{\partial y^2}f'\bigg)f'+\frac{\partial | ||
F}{\partial y}f''.\ | F}{\partial y}f''.\end{align} | ||
</math></center> | </math></center> | ||
Linia 720: | Linia 720: | ||
z}+\frac{\partial^2 F}{\partial z^2}\frac{\partial f}{\partial x} | z}+\frac{\partial^2 F}{\partial z^2}\frac{\partial f}{\partial x} | ||
\bigg)\frac{\partial f}{\partial x}+\frac{\partial F}{\partial | \bigg)\frac{\partial f}{\partial x}+\frac{\partial F}{\partial | ||
z}\frac{\partial^2 f}{\partial x^2}.\ | z}\frac{\partial^2 f}{\partial x^2}.\end{align} | ||
</math></center> | </math></center> | ||
Linia 761: | Linia 761: | ||
y_0)\\ &\frac{\partial^2 f}{\partial y\partial x}(x_0, y_0) \ & \ | y_0)\\ &\frac{\partial^2 f}{\partial y\partial x}(x_0, y_0) \ & \ | ||
&\frac{\partial^2 f}{\partial y^2}(x_0, | &\frac{\partial^2 f}{\partial y^2}(x_0, | ||
y_0)\ | y_0)\end{align}\right]=-\bigg(\frac{\partial F}{\partial z}(x_0, | ||
y_0, z_0)\bigg)^{-1} \left[\aligned &\frac{\partial^2 F}{\partial | y_0, z_0)\bigg)^{-1} \left[\aligned &\frac{\partial^2 F}{\partial | ||
x^2}(x_0, y_0, z_0) & \ &\frac{\partial^2 F}{\partial x\partial | x^2}(x_0, y_0, z_0) & \ &\frac{\partial^2 F}{\partial x\partial | ||
y}(x_0, y_0, z_0)\\ &\frac{\partial^2 F}{\partial y\partial | y}(x_0, y_0, z_0)\\ &\frac{\partial^2 F}{\partial y\partial | ||
x}(x_0, y_0, z_0) \ & \ &\frac{\partial^2 F}{\partial y^2}(x_0, | x}(x_0, y_0, z_0) \ & \ &\frac{\partial^2 F}{\partial y^2}(x_0, | ||
y_0, z_0)\ | y_0, z_0)\end{align}\right] | ||
</math></center> | </math></center> | ||
Linia 806: | Linia 806: | ||
<center><math> | <center><math> | ||
\left\{\aligned \frac{\partial F}{\partial x}(x,y,z)=0 \\ \frac{\partial F}{\partial | \left\{\aligned \frac{\partial F}{\partial x}(x,y,z)=0 \\ \frac{\partial F}{\partial | ||
y}(x,y,z)=0\\(x,y,z)\in\{F=0\} \ | y}(x,y,z)=0\\(x,y,z)\in\{F=0\} \end{align} \right. \text{ czyli } | ||
\left\{\aligned 4x(x^2+y^2+z^2)-3yz=0 \\ | \left\{\aligned 4x(x^2+y^2+z^2)-3yz=0 \\ | ||
4y(x^2+y^2+z^2)-3xz=0\\ (x^2+y^2+z^2)^2 -3 xyz=0. | 4y(x^2+y^2+z^2)-3xz=0\\ (x^2+y^2+z^2)^2 -3 xyz=0. | ||
\ | \end{align} \right. | ||
</math></center> | </math></center> | ||
Linia 833: | Linia 833: | ||
&x=y=-\frac{3\sqrt{2}}{16}, \ &&z=\frac{3}{8},\\ | &x=y=-\frac{3\sqrt{2}}{16}, \ &&z=\frac{3}{8},\\ | ||
&x=-y=\frac{3\sqrt{2}}{16}, \ &&z=-\frac{3}{8},\\ | &x=-y=\frac{3\sqrt{2}}{16}, \ &&z=-\frac{3}{8},\\ | ||
&x=-y=-\frac{3\sqrt{2}}{16}, \ &&z=-\frac{3}{8},\ | &x=-y=-\frac{3\sqrt{2}}{16}, \ &&z=-\frac{3}{8},\end{align} | ||
</math></center> | </math></center> | ||
Linia 846: | Linia 846: | ||
-\frac{3\sqrt{2}}{16}\big), \\ &A_3=\big(-\frac{3\sqrt{2}}{16}, | -\frac{3\sqrt{2}}{16}\big), \\ &A_3=\big(-\frac{3\sqrt{2}}{16}, | ||
\frac{3\sqrt{2}}{16}\big), \\ &A_4=\big(\frac{3\sqrt{2}}{16}, | \frac{3\sqrt{2}}{16}\big), \\ &A_4=\big(\frac{3\sqrt{2}}{16}, | ||
-\frac{3\sqrt{2}}{16}\big), \ | -\frac{3\sqrt{2}}{16}\big), \end{align} | ||
</math></center> | </math></center> | ||
Linia 1013: | Linia 1013: | ||
<center><math> | <center><math> | ||
\left\{\aligned d_{(x,y)}\Phi=0\\g(x,y)=0\ | \left\{\aligned d_{(x,y)}\Phi=0\\g(x,y)=0\end{align} \right. | ||
\text{ czyli } | \text{ czyli } | ||
\left\{\aligned \frac{\partial f}{\partial x}=\lambda \frac{\partial g}{\partial x} | \left\{\aligned \frac{\partial f}{\partial x}=\lambda \frac{\partial g}{\partial x} | ||
\\ \frac{\partial f}{\partial y}=\lambda \frac{\partial g}{\partial y} | \\ \frac{\partial f}{\partial y}=\lambda \frac{\partial g}{\partial y} | ||
\\g(x,y)=0.\ | \\g(x,y)=0.\end{align} \right. | ||
</math></center> | </math></center> | ||
}} | }} | ||
Linia 1055: | Linia 1055: | ||
<center><math> | <center><math> | ||
\left\{\aligned d_{(x,y,z)}\Phi=0\\g(x,y,z)=0\ | \left\{\aligned d_{(x,y,z)}\Phi=0\\g(x,y,z)=0\end{align} \right. | ||
\text{ czyli } | \text{ czyli } | ||
\left\{\aligned \frac{\partial f}{\partial x}=\lambda \frac{\partial g}{\partial x} | \left\{\aligned \frac{\partial f}{\partial x}=\lambda \frac{\partial g}{\partial x} | ||
\\ \frac{\partial f}{\partial y}=\lambda \frac{\partial g}{\partial y} | \\ \frac{\partial f}{\partial y}=\lambda \frac{\partial g}{\partial y} | ||
\\ \frac{\partial f}{\partial z}=\lambda \frac{\partial g}{\partial z} | \\ \frac{\partial f}{\partial z}=\lambda \frac{\partial g}{\partial z} | ||
\\g(x,y,z)=0.\ | \\g(x,y,z)=0.\end{align} \right. | ||
</math></center> | </math></center> | ||
}} | }} | ||
Linia 1077: | Linia 1077: | ||
y}=\lambda \frac{\partial g}{\partial y}\\ \frac{\partial | y}=\lambda \frac{\partial g}{\partial y}\\ \frac{\partial | ||
f}{\partial z}=\lambda \frac{\partial g}{\partial z} | f}{\partial z}=\lambda \frac{\partial g}{\partial z} | ||
\\g(x,y,z)=0\ | \\g(x,y,z)=0\end{align} \right. \text{ czyli } \left\{\aligned | ||
1=2\lambda x \\-2=2\lambda y\\2=2\lambda z\\x^2+y^2+z^2=1. | 1=2\lambda x \\-2=2\lambda y\\2=2\lambda z\\x^2+y^2+z^2=1. | ||
\ | \end{align} \right. | ||
</math></center> | </math></center> | ||
Linia 1132: | Linia 1132: | ||
<center><math> | <center><math> | ||
\left\{\aligned d_{(x,y,z)}\Phi=0\\G(x,y,z)=0\ | \left\{\aligned d_{(x,y,z)}\Phi=0\\G(x,y,z)=0\end{align} \right. | ||
\text{ czyli } | \text{ czyli } | ||
\left\{\aligned \frac{\partial F}{\partial x}=\lambda_1 \frac{\partial g_1}{\partial x}+\lambda_2 \frac{\partial g_2}{\partial x} | \left\{\aligned \frac{\partial F}{\partial x}=\lambda_1 \frac{\partial g_1}{\partial x}+\lambda_2 \frac{\partial g_2}{\partial x} | ||
Linia 1138: | Linia 1138: | ||
\\ \frac{\partial F}{\partial z}=\lambda_1 \frac{\partial g_1}{\partial z} +\lambda_2 \frac{\partial g_2}{\partial z} | \\ \frac{\partial F}{\partial z}=\lambda_1 \frac{\partial g_1}{\partial z} +\lambda_2 \frac{\partial g_2}{\partial z} | ||
\\ g_1(x,y,z)=0 | \\ g_1(x,y,z)=0 | ||
\\ g_2(x,y,z)=0\ | \\ g_2(x,y,z)=0\end{align} \right. | ||
</math></center> | </math></center> | ||
Linia 1181: | Linia 1181: | ||
\\ \frac{\partial f}{\partial z}=\lambda_1 \frac{\partial g_1}{\partial z} +\lambda_2 \frac{\partial g_2}{\partial z} | \\ \frac{\partial f}{\partial z}=\lambda_1 \frac{\partial g_1}{\partial z} +\lambda_2 \frac{\partial g_2}{\partial z} | ||
\\ g_1(x,y,z)=0 | \\ g_1(x,y,z)=0 | ||
\\ g_2(x,y,z)=0\ | \\ g_2(x,y,z)=0\end{align} \right. | ||
\text{ czyli } | \text{ czyli } | ||
\left\{\aligned 1=2\lambda_1 x\\-1=2\lambda_2 y\\ -2 | \left\{\aligned 1=2\lambda_1 x\\-1=2\lambda_2 y\\ -2 | ||
=2(\lambda_1+\lambda_2)z\\ x^2+z^2-1=0\\y^2+z^2-1=0. | =2(\lambda_1+\lambda_2)z\\ x^2+z^2-1=0\\y^2+z^2-1=0. | ||
\ | \end{align}\right. | ||
</math></center> | </math></center> | ||
Wersja z 12:31, 9 cze 2020
AM2 - moduł 9
9. Twierdzenie o funkcjach uwikłanych.
Rozważamy funkcje zadane niejawnie. Formułujemy twierdzenie o funkcji uwikłanej i przedstawiamy metody badania takiej funkcji. Podajemy metodę mnożników Lagrange'a badania ekstremów warunkowych funkcji wielu zmiennych.
9.1 Punkty regularne poziomicy
Niech będą przestrzeniami Banacha i niech będzie zbiorem otwartym. Rozważmy funkcję
oraz jej poziomicę zerową tj. zbiór
Ustalmy pewien punkt , , , na tej poziomicy.
Definicja 9.1.
Mówimy, że punkt jest punktem regularnym zbioru , jeśli różniczka jest suriekcją przestrzeni na przestrzeń . Punkt poziomicy , który nie jest regularny, będziemy nazywać punktem nieregularnym tej poziomicy.
Przypomnijmy fakt z algebry liniowej:
W przypadku przestrzeni o skończonym wymiarze , odwzorowanie liniowe jest suriekcją wtedy i tylko wtedy, gdy rząd (macierzy) odwzorowania jest maksymalny, tj. równy .
Przykład 9.3.
Niech . Rozważmy i poziomicę zerową tej funkcji
czyli okrąg o środku w punkcie i promieniu jednostkowym. Różniczka
w dowolnym punkcie ma rząd maksymalny. Rząd różniczki nie jest maksymalny tylko w punkcie, w którym obie pochodne cząstkowe , zerują się, czyli gdy
ale punkt nie leży na okręgu .
Przykład 9.4.
Niech i niech . Pamiętamy, że poziomicą zerową tej funkcji
jest krzywa, którą nazywamy liściem Kartezjusza. Zauważmy, że różniczka
czyli w punktach i . Stąd punkt jest punktem nieregularnym
liścia Kartezjusza. Drugi punkt nie leży na poziomicy .Przykład 9.5.
Niech i niech . Poziomicę zerową tej funkcji już także poznaliśmy. Krzywą
nazywamy lemniskatą Bernoullego. Różniczka
nie ma maksymalnego rzędu tylko wtedy, gdy
czyli w trzech punktach , i , spośród których tylko pierwszy leży na lemniskacie Bernoullego. Nie jest więc jej punktem regularnym.
Przykład 9.6.
Poziomicą zerową funkcji
jest sfera o środku w początku układu współrzędnych i promieniu jednostkowym:
Różniczka odwzorowania dana wzorem
jest odwzorowaniem liniowym i ciągłym z do i ma rząd maksymalny (równy 1) we wszystkich punktach poza początkiem układu współrzędnych , w którym rząd ten wynosi zero. Punkt nie należy jednak do sfery , stąd każdy jej punkt jest regularny.
Rysunek am2w09.0040 a, b, c - przecięcie dwóch walców
Przykład 9.7.
Niech . Wówczas poziomicą zerową funkcji jest zbiór
który powstaje z przecięcia walca o osi obrotu z walcem o osi obrotu . Zauważmy, że różniczka
jest odwzorowaniem liniowym i ciągłym z do . Jest więc maksymalnego rzędu, gdy rząd macierzy jej współczynników
wynosi 2. Zauważmy, że rząd macierzy wynosi zero, gdy (punkt nie należy do poziomicy zerowej ). Z kolei, rząd tej macierzy wynosi jeden, gdy
co ma miejsce w dwóch punktach poziomicy , a mianowicie w punktach oraz . Są to jedyne punkty poziomicy, które nie są regularne, gdyż rząd różniczki w pozostałych punktach poziomicy jest
maksymalny (tj. wynosi ).Przykład 9.8.
Niech Poziomicą zerową tej funkcji jest powierzchnia o równaniu
Różniczka jest odwzorowaniem liniowym i ciągłym z do , nie ma więc rzędu maksymalnego w punktach , w których rząd różniczki jest niższy niż jeden, czyli w punktach, w których zerują się wszystkie trzy pochodne cząstkowe , tzn. gdy
Układ ten spełnia punkt o współrzędnych a także punkty o współrzędnych , które spełniają układ
czyli . Spośród punktów poziomicy warunek ten spełniają poza punktem także punkty , , , , gdzie . Poza wskazanymi pięcioma punktami poziomicy pozostałe punkty są regularne, gdyż różniczka odwzorowania ma w nich rząd maksymalny (równy ).
9.2 Twierdzenie o funkcji uwikłanej
Niech , będą przestrzeniami Banacha i niech będzie funkcją różniczkowalną w zbiorze otwartym . Niech będzie punktem poziomicy zerowej funkcji , gdzie . Powstaje naturalne pytanie o warunki, przy których poziomicę w otoczeniu punktu można przedstawić jako wykres pewnej funkcji takiej, że w pewnym otoczeniu otwartym punktu .
Rozważmy dwa proste przykłady.
Przykład 9.9.
Niech będzie punktem okręgu , który stanowi poziomicę zerową funkcji
Jeśli , to w otoczeniu punktu można określić funkcję
taką, że
Z kolei, jeśli , to w otoczeniu punktu znajdziemy funkcję
taką, że
Jedynymi punktami okręgu , w otoczeniu których nie znajdziemy funkcji takiej, że i , są punkty oraz
. Zauważmy, że w punktach tych zeruje się pochodna cząstkowa .Przykład 9.10.
Niech , . Niech będzie punktem sfery , która stanowi poziomicę zerową funkcji . Jeśli , to w otoczeniu punktu wewnątrz okręgu można określić funkcję
taką, że
Z kolei, jeśli znajdziemy funkcję
taką, że
Jedynymi punktami sfery , w otoczeniu których nie znajdziemy funkcji takiej, że i , są punkty okręgu zawartego w płaszczyźnie . Zauważmy, że w punktach tych zeruje się pochodna cząstkowa .
Uogólnijmy to spostrzeżenie formułując
Twierdzenie 9.11.[twierdzenie o funkcji uwikłanej]
Niech będzie funkcją różniczkowalną o ciągłej różniczce na zbiorze otwartym . Niech (gdzie ) będzie punktem poziomicy zerowej funkcji takim, że zacieśnienie różniczki do podprzestrzeni jest izomorfizmem. Wówczas
1) istnieje pewne otoczenie otwarte punktu oraz istnieje dokładnie jedna funkcja określona w tym otoczeniu taka, że oraz dla dowolnego . Ponadto
2) funkcja jest różniczkowalna i ma ciągłą różniczkę w zbiorze
daną wzoremoznacza zacieśnienie różniczki do podprzestrzeni a jest izomorfizmem odwrotnym do zacieśnienia różniczki .
Dowód [szkic]
(szkic) Pominiemy dowód istnienia funkcji . Wyprowadzimy jednak wzór, który określa jej różniczkę, w trzech przypadkach najczęściej spotykanych w konkretnych zastosowaniach. Przypomnijmy wpierw jednak, że
Jeśli , to odwzorowanie liniowe jest izomorfizmem wtedy i tylko wtedy, gdy wyznacznik tego odwzorowania jest różny od zera, tj. .
Przypadek I. Niech i niech Jeśli funkcja spełnia równanie , to przy założeniu, że jest różniczkowalna, na mocy twierdzenia o różniczce złożenia funkcji otrzymamy równość
Stąd
Z założenia zacieśnienie różniczki jest izomorfizmem przestrzeni do , co oznacza w tym przypadku, że pochodna cząstkowa . Stąd pochodna funkcji uwikłanej wyraża się wzorem
Przypadek II. Niech Jeśli funkcja spełnia równanie , to przy założeniu, że jest różniczkowalna, na mocy twierdzenia o różniczce złożenia funkcji otrzymamy równość prawdziwą w punktach poziomicy
oraz
Izomorficzność zawężenia różniczki również w tym przypadku oznacza po prostu, że pochodna cząstkowa . Wówczas z powyższych równości dostajemy
oraz
gdzie . Pomijając argument w zapisie pochodnych cząstkowych można te wzory podać w skróconej formie (łatwiejszej do zapamiętania):
Przypadek III. Niech , i niech
Załóżmy, że istnieje funkcja różniczkowalna
taka, że
to znaczy
Stąd - korzystając z twierdzenia o różniczkowaniu złożenia funkcji - dostajemy
oraz
Otrzymujemy układ dwóch równań z niewiadomymi , , które są pochodnymi składowych funkcji uwikłanej :
Zapiszmy ten układ w formie macierzowej
W rozważanym przypadku założenie o izomorficzności zacieśnienia różniczki do podprzestrzeni oznacza po prostu fakt, że macierz pochodnych cząstkowych, która reprezentuje :
jest nieosobliwa, tj. jej wyznacznik jest różny od zera. Z kolei macierz kolumnowa
reprezentuje zacieśnienie różniczki do podprzestrzeni . Macierz niewiadomych , :
reprezentuje różniczkę funkcji uwikłanej . Stąd układ równań z niewiadomymi , przedstawia równanie
w którym niewiadomą jest różniczka . Izomorficzność zacieśnienia gwarantuje istnienie odwzorowania odwrotnego , dzięki czemu otrzymujemy
W języku algebry nieosobliwość macierzy
gwarantuje istnienie macierzy do niej odwrotnej. Stąd rozwiązaniem równania
jest
lub równoważnie:

9.3 Ekstrema funkcji uwikłanej
Niech i niech
będzie funkcją określoną w pewnym zbiorze otwartym .
Zauważmy, że do wyznaczenia różniczki funkcji uwikłanej równaniem nie potrzebujemy znać jawnej postaci funkcji . Co więcej, potrafimy wyznaczyć punkty, w których funkcja może osiągać ekstrema, korzystając ze znanego warunku koniecznego istnienia ekstremum.
Twierdzenie 9.13.[warunek konieczny istnienia ekstremum funkcji uwikłanej]
Jeśli funkcja uwikłana równaniem osiąga ekstremum w pewnym punkcie takim, że pochodna cząstkowa , to w punkcie zerują się pochodne cząstkowe funkcji po zmiennych , tzn.
Dowód
Warunek ten jest konsekwencją wzoru na różniczkę funkcji , który stanowi tezę twierdzenia o funkcji uwikłanej. Ponieważ zachodzi równość
to wobec izomorficzności która w tym przypadku jest równoważna stwierdzeniu, że ) różniczka zeruje się wtedy i tylko wtedy, gdy . Warunek ten jest z kolei równoważny zerowaniu się w punkcie pochodnych cząstkowych funkcji po zmiennych , czyli

Wyznaczymy również drugą różniczkę funkcji uwikłanej , aby z jej określoności wywnioskować, czy funkcja osiąga maksimum, minimum, czy też w ogólne nie osiąga ekstremum w punktach, które spełniają warunek konieczny istnienia ekstremum.
Rozważmy dwa najczęściej spotykane przypadki:
Przypadek I. Niech będzie funkcją dwukrotnie różniczkowalną. Rozważmy funkcję uwikłaną równaniem . Różniczkując tę równość po zmiennej otrzymamy (na podstawie twierdzenia o różniczkowaniu złożenia) równość
Różniczkując względem zmiennej powtórnie obie strony powyższej nierówności, otrzymamy
Otrzymane wyrażenie znacznie upraszcza się w punkcie , w którym . Otrzymamy wówczas równość
z której - wobec założenia, że - otrzymamy
gdzie .
Przypadek II. Niech będzie funkcją uwikłaną równaniem , gdzie jest funkcją dwukrotnie różniczkowalną. Wówczas w punktach poziomicy otrzymamy równości zawierające pochodne cząstkowe oraz :
Policzymy pochodną cząstkową po zmiennej obu stron pierwszej z tych równości. Ze wzorów na pochodną złożenia funkcji wyznaczymy wpierw:
oraz
Wobec tego
W punkcie , w którym zeruje się różniczka funkcji uwikłanej, mamy , , a powyższy wzór upraszcza się i przyjmuje postać:
gdzie . W podobny sposób dostajemy równości zawierające pozostałe pochodne cząstkowe rzędu drugiego funkcji uwikłanej , które przy założeniu zerowania się różniczki funkcji uwikłanej w punkcie przyjmują postać:
Stąd - wobec założenia, że - otrzymujemy:
W podobny sposób (szczegółowe rachunki pomijamy) można wykazać ogólny wzór wyrażający drugą różniczkę funkcji uwikłanej.
Wniosek 9.14.
Niech , będzie funkcją uwikłaną równaniem , gdzie jest funkcją dwukrotnie różniczkowalną w pewnym otoczeniu punktu , gdzie . Niech i niech różniczka . Wówczas druga
różniczka funkcji uwikłanej w punkcie wynosiPrzykład 9.15.
Wyznaczmy ekstrema funkcji danej w postaci uwikłanej , gdzie
Obserwacja poziomicy zerowej każe przypuszczać, że w otoczeniu czterech punktów tej poziomicy da się wskazać otoczenia ich rzutów na płaszczyznę zmiennych oraz jednoznacznie określone funkcje w tych otoczeniach takie, że dwie z nich będą osiągać maksima a pozostałe dwie - minima.
Zgodnie z wykazanymi uwagami, aby wyznaczyć punkty ekstremalne funkcji uwikłanej szukamy punktów , których współrzędne spełniają układ równań:
Możliwość skorzystania z twierdzenia o funkcji uwikłanej (aby mieć gwarancję istnienia funkcji uwikłanej ) wymaga sprawdzenia założenia:
Nietrudno zauważyć, że początek układu współrzędnych spełnia układ równań, ale nie spełnia założenia twierdzenia o funkcji uwikłanej, gdyż . Obserwacja poziomicy wyraźnie pokazuje, że nie ma możliwości jednoznacznego odwikłania funkcji z równania w żadnym otoczeniu punktu . Ponadto układ spełniają cztery punkty o współrzędnych
w których spełniony jest warunek . Na mocy twierdzenia o funkcji uwikłanej w pewnych otoczeniach odpowiednio punktów
istnieją jedyne funkcje , , , , które spełniają warunek
oraz odpowiednio , . Analiza poziomicy (lub określoności drugiej różniczki ) pozwala stwierdzić, że funkcje i osiągają w punktach , maksimum, zaś i osiągają w punktach , minimum.
Dalsze przykłady wyznaczania ekstremów funkcji uwikłanej analizujemy w ramach ćwiczeń.
9.4 Ekstrema warunkowe. Metoda mnożników Lagrange'a
Dotychczas wyznaczaliśmy ekstrema funkcji określonej w pewnym otwartym podzbiorze przestrzeni unormowanej (przy czym w praktycznych przykładach zajmowaliśmy się przykładami, gdy , ). Równie ważne z praktycznego punktu widzenia są także rozważania polegające na wyznaczaniu ekstremów funkcji zacieśnionej do zbioru, który nie jest otwarty w .
Przykład 9.16.
Wyznaczmy najmniejszą i największą wartość funkcji
na sferze
Sfera ta jest zbiorem domkniętym i ograniczonym, jest więc zwarta. Stąd na na mocy twierdzenia Weierstassa o osiąganiu kresów przez funkcję ciągłą wnioskujemy, że wielomian osiąga na tej sferze zarówno wartość najmniejszą jak i największą. Nasze dotychczasowe doświadczenie podpowiada nam, że zadanie można by sprowadzić do badania funkcji dwóch zmiennych np. poprzez odwikłanie zmiennej
z równania sfery i zbadania funkcji dwóch zmiennych danych w kole wzorami:
Niezbyt skomplikowane (choć nieco żmudne rachunki) prowadzą do wyznaczenia ekstremów tych funkcji, a co za tym idzie: wartości ekstremalnych funkcji na danej sferze.
Podamy jednak pewną metodę, która pozwala wyznaczać ekstremum funkcji zacieśnionej do poziomicy zerowej pewnej funkcji również w przypadku, gdy odwikłanie zmiennej z równania nie jest tak proste jak w podanym przykładzie.
Sprecyzujmy jednak wpierw problem.
Niech będą przestrzeniami Banacha i niech , będą funkcjami.
Definicja 9.17.
Mówimy, że funkcja osiąga ekstremum warunkowe w punkcie przy warunku , jeśli zacieśnienie funkcji do poziomicy osiąga ekstremum w tym punkcie.
Prawdziwe jest następujące twierdzenie, które stanowi podstawę metody mnożników Lagrange'a.
Niech będą przestrzeniami Banacha.
Twierdzenie 9.18.
Niech , będą funkcjami różniczkowalnymi w otoczeniu punktu regularnego poziomicy (co - przypomnijmy - oznacza, że różniczka jest suriekcją przestrzeni na ). Jeśli funkcja osiąga ekstremum warunkowe w punkcie regularnym poziomicy zerowej funkcji , to istnieje funkcjonał liniowy i ciągły taki, że zachodzi równość .
Prawdziwe jest również twierdzenie, które na podstawie określoności drugiej różniczki pozwala stwierdzić czy funkcja osiąga minimum, czy maksimum warunkowe w punkcie .
Twierdzenie 9.19.
Niech , będą funkcjami dwukrotnie różniczkowalnymi w otoczeniu punktu regularnego poziomicy . Jeśli istnieje funkcjonał liniowy i ciągły taki, że zachodzi równość oraz forma kwadratowa
jest dodatnio określona (odpowiednio: ujemnie określona) na podprzestrzeni przestrzeni , to funkcja osiąga w punkcie minimum (odpowiednio: maksimum) warunkowe.
Definicja 9.20.
Dowody obu twierdzeń pomijamy (można je znaleźć np. w podręczniku Krzysztofa Maurina, Analiza. Część I. Elementy, Państwowe Wydawnictwo Naukowe, Warszawa 1977). Podamy jednak interpretację tego twierdzenia w kilku najczęściej spotykanych sytuacjach.
Jeśli są funkcjami różniczkowalymi, problem znalezienia ekstremum warunkowego funkcji przy warunku sprowadza się do znalezienia punktu na poziomicy oraz stałej , która reprezentuje funkcjonał Lagrange'a. Jeśli bowiem ekstremum to jest realizowane to - zgodnie z podanym twierdzeniem - istnieje funkcjonał liniowy dany wzorem taki, że różniczka , o ile punkt jest punktem regularnym poziomicy . Przypomnijmy, że w przypadku, gdy , punkt jest regularny, jeśli rząd różniczki
wynosi 1. Wystarczy więc sprawdzić, czy w punkcie różniczka , czyli czy którakolwiek pochodna cząstkowa lub jest różna od zera. Zagadnienie sprowadza się do znalezienia punktów, w których zeruje się różniczka funkcji pomocniczej
gdzie stałą (nazywaną tradycyjnie mnożnikiem Lagrange'a) wyznaczamy z układu równań
Jeśli są funkcjami różniczkowalnymi, problem znalezienia ekstremum warunkowego funkcji przy warunku sprowadza się do znalezienia - podobnie jak w poprzednim przypadku - punktu na poziomicy oraz stałej , która reprezentuje funkcjonał Lagrange'a. Jeśli bowiem ekstremum to jest realizowane to - zgodnie z podanym twierdzeniem - istnieje funkcjonał liniowy dany wzorem , taki, że różniczka , o ile punkt jest punktem regularnym poziomicy . Przypomnijmy, że w przypadku, gdy punkt jest regularny, jeśli rząd (odwzorowania liniowego z do ) jest maksymalny, czyli wynosi . Wystarczy więc sprawdzić, czy w punkcie różniczka
nie zeruje się, czyli czy któraś z pochodnych cząstkowych , , jest różna od zera. Zagadnienie można sprowadzić do znalezienia punktów, w których zeruje się różniczka funkcji pomocniczej
gdzie stałą wyznaczamy z układu równań
Przykład 9.23.
Powróćmy do zadania polegającego na wyznaczeniu najmniejszej i największej wartości funkcji na sferze . Rozwiążemy je metodą mnożników Lagrange'a opisaną w poprzednich uwagach. Dana sfera jest poziomicą zerową funkcji . Wykazaliśmy już, że każdy punkt sfery jest regularny. Niech . Rozwiązujemy układ równań
Układ ten spełniają liczby
oraz
Ponieważ sfera jest zbiorem zwartym, wystarczy wyznaczyć wartości funkcji w obu punktach i porównać je, gdyż zgodnie z twierdzeniem Weierstrassa o osiąganiu kresów przez funkcję ciągłą na zbiorze zwartym, w jednym z tych dwóch punktów funkcja musi osiągać kres dolny, a w drugim kres górny wartości na sferze . Mamy
czyli osiąga w pierwszym z tych punktów wartość najmniejszą równą , a w drugim punkcie - wartość największą na sferze równą .
Jeśli funkcja , zaś , zagadnienie znalezienia ekstremów warunkowych funkcji przy warunku sprowadza się do znalezienia punktów zbioru , w których zeruje się różniczka funkcji . Funkcjonał Lagrange'a w tym przypadku jest odwzorowaniem liniowym z , jest więc reprezentowany przez macierz złożoną z dwóch liczb: , . Funkcja jest zestawieniem dwóch funkcji o wartościach rzeczywistych, stąd
Metoda mnożników Lagrange'a sprowadza się więc do znalezienia rozwiązań układu równań
w punktach regularnych poziomicy , czyli tych, w których rząd różniczki jest maksymalny (tj. równy , gdyż różniczka jest odwzorowaniem liniowym z do ). Zwróćmy uwagę, że funkcja może osiągać ekstremum w punktach, które należą do poziomicy a nie są regularne. Metoda mnożników Lagrange'a nie rozstrzyga w tym przypadku o istnieniu ekstremum.
Przykład 9.25.
Wyznaczmy najmniejszą i największą wartość funkcji
na przecięciu się dwóch walców
Zauważmy, że każdy z walców z osobna nie jest zbiorem zwartym, gdyż nie jest ograniczony, lecz ich przecięcie jest zbiorem zwartym (gdyż jest zbiorem domkniętym i ograniczonym, zawartym między innymi w sześcianie ). Podany warunek można opisać za pomocą poziomicy zerowej funkcji . Zbadaliśmy już, że spośród punktów poziomicy tylko dwa nie są regularne: oraz . Poza tymi dwoma punktami możemy zastosować metodę mnożników Lagrange'a, która sprowadza się do wyznaczenia rozwiązań układu równań:
Układ ten ma dwa rozwiązania
oraz
Wartość funkcji w tych punktach wynosi
W obu punktach nieregularnych poziomicy mamy
Po porównaniu tych wartości: stwierdzamy, że największą wartość na na poziomicy równą funkcja osiąga w punkcie , a najmniejszą, równą , w punkcie