TKI Moduł 13: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Pqw (dyskusja | edycje)
mNie podano opisu zmian
Pqw (dyskusja | edycje)
mNie podano opisu zmian
Linia 84: Linia 84:


<math>f_n \circ p_n = f_m \circ e_{mn}\circ p_{nm}\circ p_m\sqsubseteq f_m\circ p_m.</math>
<math>f_n \circ p_n = f_m \circ e_{mn}\circ p_{nm}\circ p_m\sqsubseteq f_m\circ p_m.</math>
Co więcej,
<math> f\circ e_m = \bigvee_{n\leq m} f_n\circ p_n\circ e_m = \bigvee_{n\leq m} f_n\circ p_n\circ e_n\circ e_{nm} = \bigvee_{n\leq m} f_n\circ e_{nm} = \bigvee_{n\leq m} f_m  = f_m. </math>
W końcu pokażemy, że funkcja <math>f</math>  o podanych własnościach jest
tylko jedna. Jeśli dla <math>f'\colon D\to E</math> zachodzi <math>f'\circ e_m = f_m</math>, to <math>f'\circ e_m \circ p_m = f_m\circ p_m</math>, a zatem <math>\bigvee_m f'\circ e_m \circ p_m = \bigvee_m f_m\circ p_m,</math> czyli z ciągłości <math>f'</math>: <math>f'(\bigvee_m \circ e_m \circ p_m) = \bigvee_m f_m\circ p_m.</math> Ale <math>\bigvee_m \circ e_m \circ p_m = 1_D</math>  oraz <math>\bigvee_m f_m\circ p_m = f</math>  co daje <math>f'\circ 1_D = f</math>  czyli <math>f'=f</math>. QED.
== Kategoria <math>\mathrm{Dcpo}^{EP}_{\bot}</math> ==
W tej kategorii obiektami są posety zupełne  posiadające element najmniejszy, zaś morfizmami są
pary e-p, o których była mowa na początku wykładu ???. Złożenie morfizmów
[DIAGRAM]
definiujemy w naturalny sposób jako morfizm
[DIAGRAM]
Czy <math>(e_2\circ e_1, p_1\circ p_2)</math>  jest parą e-p? Tak, ponieważ: <math>e_2\circ e_1\circ p_1\circ p_2 \sqsubseteq e_2\circ 1_E\circ p_2 = e_2\circ p_2\sqsubseteq 1_F</math> oraz <math>p_1\circ p_2\circ e_2\circ e_1 = p_1\circ 1_E\circ e_1 = p_1\circ e_1 = 1_D.</math> A zatem złożenie par e-p jest dobrze zdefiniowane, a co za tym idzie, i co łatwo już teraz pokazać, <math>Dcpo^{EP}_{\bot}</math>  jest kategorią.
'''Definicja'''. Nazwijmy '''<math>\omega</math>-kategorią''' każdą kategorię, w której diagram postaci
[DIAGRAM]
posiada granicę odwrotną.
Zauważmy, że twierdzenie o zgodności granicy prostej i odwrotnej (Twierdzenie ???) mówi, że <math>Dcpo^{EP}_{\bot}</math>  jest <math>\omega</math>-kategorią!
'''Definicja'''. Funktor <math>F</math>  między <math>\omega</math>-kategoriami nazywamy '''ciągłym''', jeśli zachowuje granice odwrotne, t.j. jeśli <math>D_{\infty}</math>  jest granicą diagramu ???, to <math>F(D_{\infty})</math> jest granicą diagramu
[DIAGRAM]
'''Lemat'''. Niech <math>\mathbf{A}</math>  będzie <math>\omega</math>-kategorią, <math>F\colon \mathbf{A}\to \mathbf{A}</math>  funktorem ciągłym, <math>f\colon A\to F(A)</math>  morfizmem w <math>\mathbf{A}</math>  oraz niech diagram
[DIAGRAM]
posiada granicę odwrotną <math>D_{\infty}</math>. Wówczas <math>D_{\infty}\cong F(D_{\infty})</math>.

Wersja z 17:32, 20 cze 2006

Udowodnijmy teraz podstawowe twierdzenie na temat diagramów w kategorii Dcpo.

Twierdzenie. W Dcpo istnieją granice dowolnych diagramów.

Dowód: Dowód przeprowadzimy dla szczególnego diagramu:

[DIAGRAM]

(Dowód ogólny jest analogiczny lecz wymaga bardziej technicznego zapisu, wiec go pominiemy.) Pokażemy, że granica powyższego diagramu jest dana jako

D={(x0,x1,...)(nω)(fn(xn+1)=xn)}.

Zauważmy, że zbiór D jest posetem, w którym elementy są uporządkowane po współrzędnych (to znaczy, że porządek jest dziedziczony z produktu ΠnωDn. Jeśli GD jest zbiorem skierowanym, to dla każdego nωzbiór πn[G]={xnxG}jest skierowanym podzbiorem Dn. Niech yn={xnxG}. Z ciągłości funkcji tworzących diagram mamy: fn(yn+1)=fn({xn+1xG})={xnxG}=yn. To znaczy, że (y0,y1,...)D i, jak łatwo zauważyć, element ten jest supremum skierowanym zbioru G. Pokazaliśmy więc, że D Dcpo.

Udowodnimy teraz, że D wraz z projekcjami {πn:DDnnω} jest granicą. Po pierwsze, dla GD mamy

πn(G)=yn={xnxG}=πn[G],

a więc projekcje są ciągłe. Po drugie, jeśli {gk:EDkkω} jest dowolną inną granicą, to zdefiniujmy h:ED jako h(x)=(g0(x),g1(x),...). Z definicji powyższej wynika, że dla każdego kω mamy $\pi_k \circ h = g_k</math>. Zauważmy, że to świadczy o jednoznaczności wyboru h. A zatem D jest granicą omawianego diagramu. Co więcej, z jednoznaczności granicy wnioskujemy, że DE. QED

Uwaga! Powyższe twierdzenie nie zachodzi dla klas dziedzin ciągłych i algebraicznych w ogólności. Aby granica była również posetem odpowiedniej klasy, musimy nałożyć poewne restrykcje zarówno na kształ diagramów, jak i na własności funkcji tworzących diagram.

Twierdzenie o zgodności granicy prostej i odwrotnej

Przedstawimy teraz twierdzenie o zgodności granicy prostej i odwrotnej pewnych szczególnych diagramów w kategorii posetów zupełnych. Wynik ten jest znany w literaturze angielskojęzycznej jako limit-colimt coincidence i jest jednym z kamieni milowych w teorii dziedzin. Twierdzenie to wykorzystuje się przede wszystkim przy rozwiązywaniu tak zwanych rekursywnych równań dziedzinowych (ang. recursive domain equations). Przykładem takiego równania jest D[DD]. Okazuje się, że jego nietrywialne rozwiązania istnieja! Tak więc istnieją posety, które są izomorficzne z przestrzenią swoich ciągłych endofunkcji! Jeden z takich częściowych porządków skonstruujemy poniżej, pod koniec wykładu.

Twierdzenie. Rozważmy diagram F w kategorii Dcpo taki, że:

1. Wierzchołkami F są posety D0,D1,D2,...;

2. Dla nm istnieją funkcje emn:DnDm i pnm:DmDn tworzące parę e-p; 3. Dla każdego nω mamy enn=1Dn;

4. Dla nmk mamy ekn=ekmemn oraz pnk=pnmpmk.

Zdefiniujmy:

D={(x0,x1,...)(nm)(xn=pnm(xm))},

pm:DDm,  (x0,x1,...)xm, mω

em:DmD, x(kn,mpnkekm(x)nω).

Wtedy:

5. Para (em,pm) jest parą e-p i zachodzi nωenpn=1D,

6.{pn:DDn} jest granicą diagramu F. Jeśli {gn:CDn} jest dowolną inną granicą, to izmorfizm h:CD jest dany jako h(x)=(gn(x)nω) lub h=nengn;

7.{en:DnD} jest granicą odwrotną diagramu F. Jeśli {fn:EDn} jest dowolną inną granicą, to izmorfizm f:DE jest dany jako f(xnnω)=nfn(xn) lub f=nfnpn.

Dowód: W Twierdzeniu ??? pokazaliśmy już, że granicą diagramu jest {pn:DDn} i że izomorfizm h:CD ma (pierwszą z) postulowanych postaci. Pokażmy teraz, że funkcje em są dobrze zdefiniowane, tj. że y=em(x) należy do D dla dowolnego mω. Niech m będzie dowolne i załóżmy, że nn. Mamy:

pnn(yn)=pnn(kn,mpnkekm(x))=kn,mpnnpnkekm(x)=kn,mpnkekm(x)=yn.

W dowodzie korzystaliśmy kolejno z: definicji yn, ciągłości pnn i definicji yn. A zatem y=(y0,y1,...)D. Co więcej, funkcje em są ciągłe, gdyż tylko funkcje ciągłe zostały użyte w ich definicji.

Przejdźmy do dowodu (5). Niech mω. Mamy:


empm(xnnω)=em(xm)=(kn,mpnkekm(xm)nω)=(kn,mpnkekmpmk(xk)nω)(kn,mpnk(xk)nω)=(knpnk(xk)nω)=(xnnω).

Ponadto, pmem(x)=pm(kn,mpnkekm(x)nω)=kmpmkekm(x)=x.

Bliższa analiza pokazuje, że empm pozostawi niezmienione te elementy ciągu (xnnω) gdzie nm:

pn(empm(xnnω))=...=pn(kn,mpnkekmpmk(xk)nω)=pn(kn,mpnmpmkekmpmk(xk)nω)=pn(kn,mpnmpmk(xk)nω)=pn(knpnk(xk)nω)=pn(knxnnω)=pn(xnnω)=xn.

To dowodzi, że nenpn=1D, czyli (5).

Korzystając z powyższego mamy też natychmiast:

h=1Dh=nEnpnh=emgn,

co kończy dowód (6).

Do pokazania pozostała nam (7), czyli fakt, że {en:DnD} jest granicą odwrotną diagramu F Jeśli {fn:EDn} jest dowolną inną granicą, to sprawdźmy najpierw czy funkcja f=nfnpn jest dobrze zdefiniowana, tj. czy supremum jest nad zbiorem skierowanym. Ale tak jest, ponieważ dla nm:

fnpn=fmemnpnmpmfmpm.

Co więcej,

fem=nmfnpnem=nmfnpnenenm=nmfnenm=nmfm=fm.

W końcu pokażemy, że funkcja f o podanych własnościach jest tylko jedna. Jeśli dla f:DE zachodzi fem=fm, to fempm=fmpm, a zatem mfempm=mfmpm, czyli z ciągłości f: f(mempm)=mfmpm. Ale mempm=1D oraz mfmpm=f co daje f1D=f czyli f=f. QED.

Kategoria DcpoEP

W tej kategorii obiektami są posety zupełne posiadające element najmniejszy, zaś morfizmami są pary e-p, o których była mowa na początku wykładu ???. Złożenie morfizmów

[DIAGRAM]

definiujemy w naturalny sposób jako morfizm

[DIAGRAM]

Czy (e2e1,p1p2) jest parą e-p? Tak, ponieważ: e2e1p1p2e21Ep2=e2p21F oraz p1p2e2e1=p11Ee1=p1e1=1D. A zatem złożenie par e-p jest dobrze zdefiniowane, a co za tym idzie, i co łatwo już teraz pokazać, DcpoEP jest kategorią.

Definicja. Nazwijmy ω-kategorią każdą kategorię, w której diagram postaci

[DIAGRAM]

posiada granicę odwrotną.


Zauważmy, że twierdzenie o zgodności granicy prostej i odwrotnej (Twierdzenie ???) mówi, że DcpoEP jest ω-kategorią!

Definicja. Funktor F między ω-kategoriami nazywamy ciągłym, jeśli zachowuje granice odwrotne, t.j. jeśli D jest granicą diagramu ???, to F(D) jest granicą diagramu

[DIAGRAM]

Lemat. Niech 𝐀 będzie ω-kategorią, F:𝐀𝐀 funktorem ciągłym, f:AF(A) morfizmem w 𝐀 oraz niech diagram

[DIAGRAM]

posiada granicę odwrotną D. Wówczas DF(D).