PF Moduł 5: Różnice pomiędzy wersjami
Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Nie podano opisu zmian |
Nie podano opisu zmian |
||
Linia 217: | Linia 217: | ||
Kiedy drgania punktu materialnego odbywają się równocześnie w dwóch prostopadłych do siebie kierunkach, na przykład wzdłuż osi <math>x\,</math> i <math>y\,</math> prostokątnego układu współrzędnych, to wypadkowy ruch tego punktu na płaszczyźnie można opisać z pomocą równań: <math>x=A_x cos(\omega_x t)</math> oraz <math>y=A_y cos(\omega_y t+\varphi)</math> . Jeśli częstości drgań są jednakowe i różnica faz wynosi zero, to ruch wypadkowy będzie odbywał się wzdłuż prostej o równaniu <math>y=(A_y/A_x)\cdot x</math> . Będzie to również drgania harmoniczne. | Kiedy drgania punktu materialnego odbywają się równocześnie w dwóch prostopadłych do siebie kierunkach, na przykład wzdłuż osi <math>x\,</math> i <math>y\,</math> prostokątnego układu współrzędnych, to wypadkowy ruch tego punktu na płaszczyźnie można opisać z pomocą równań: <math>x=A_x cos(\omega_x t)</math> oraz <math>y=A_y cos(\omega_y t+\varphi)</math> . Jeśli częstości drgań są jednakowe i różnica faz wynosi zero, to ruch wypadkowy będzie odbywał się wzdłuż prostej o równaniu <math>y=(A_y/A_x)\cdot x</math> . Będzie to również drgania harmoniczne. | ||
|} | |||
---- | |||
{| border="0" cellpadding="4" width="100%" | |||
|width="450px" valign="top"|[[Grafika:PF_M5_Slajd25.png]] | |||
|valign="top"|Jeśli częstości drgań są jednakowe i różnica faz wynosi <math>\pi\,</math> , to ruch będzie ruchem harmonicznym wzdłuż prostej o równaniu <math>y=-(A_y/A_x)\cdot x</math> . | |||
|} | |||
---- | |||
{| border="0" cellpadding="4" width="100%" | |||
|width="450px" valign="top"|[[Grafika:PF_M5_Slajd26.png]] | |||
|valign="top"|Ciekawa jest sytuacja, gdy częstości są równe, a fazy różnią się o <math>\pi/2\,</math> . Podnosząc do kwadratu wyrażenia na <math>x\,</math> i <math>y\,</math> i dodając równania stronami, otrzymujemy równanie elipsy. Po takim właśnie torze porusza się punkt. W przypadku, gdy amplitudy są równe, elipsa przechodzi w okrąg. | |||
Widzimy, że jeśli punkt materialny porusza się ruchem jednostajnym po okręgu w płaszczyźnie <math>(x, y)\,</math>, to ruch jego rzutu na osie układu współrzędnych jest ruchem harmonicznym. | |||
To interesujące stwierdzenie łączy ruch harmoniczny z ruchem jednostajnym po okręgu. |
Wersja z 06:44, 21 sie 2006
![]() |
![]() |
Sprawdźmy, czy nasze równanie będzie spełnione przez funkcję , gdzie , i są dowolnymi parametrami. Obliczamy pierwszą i drugą pochodną wychylenia po czasie i podstawiamy do równania. |
![]() |
Okres i częstotliwość drgań
Okresem nazywamy czas jednego pełnego drgania. Po upływie okresu drgające ciało jest znów w takiej samej fazie. Okres powiązany jest z częstością wzorem: |
![]() |
Prędkość i przyspieszenie
Prędkość i przyspieszenie w ruchu harmonicznym obliczamy jako pierwszą i drugą pochodną wychylenia po czasie. |
![]() |
Energię kinetyczną w ruchu harmonicznym obliczamy, podstawiając do wzoru na energię kinetyczną prędkość w postaci . |
![]() |
Jeśli częstości drgań są jednakowe i różnica faz wynosi , to ruch będzie ruchem harmonicznym wzdłuż prostej o równaniu . |