Analiza matematyczna 1/Ćwiczenia 10: Wzór Taylora. Ekstrema: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Gracja (dyskusja | edycje)
Nie podano opisu zmian
Gracja (dyskusja | edycje)
Nie podano opisu zmian
Linia 376: Linia 376:
bo <math> \displaystyle \sup\{|g''(t)|: t\in [16,81]\}=\frac3{16\sqrt[4]{16^7}}=\frac3{2^{11}}</math>.
bo <math> \displaystyle \sup\{|g''(t)|: t\in [16,81]\}=\frac3{16\sqrt[4]{16^7}}=\frac3{2^{11}}</math>.


Dla <math> \displaystyle n=2</math> otrzymujemy <math> \displaystyle\sqrt[4]{16,32}\approx \sqrt[4]{16}+\frac1{4\sqrt[4]{16^3}}\cdot 0,32-\frac3{32\sqrt[4]{16^7}}(0,32)^2=2+0,01-0,000075= 2,009925
Dla <math> \displaystyle n=2</math> otrzymujemy<br>
<math> \displaystyle\sqrt[4]{16,32}\approx \sqrt[4]{16}+\frac1{4\sqrt[4]{16^3}}\cdot 0,32-\frac3{32\sqrt[4]{16^7}}(0,32)^2=2+0,01-0,000075= 2,009925
</math>
</math>



Wersja z 19:25, 13 sie 2006

10. Wzór Taylora. Ekstrema

Ćwiczenie 10.1.

Wyznaczyć ekstrema funkcji

a) x(x+2)2x+3,xx3(x1)2,x(x2)3(x+2)3,

b) xsin2x+cosx,xtgxsinx,

c) xxe1x+2,x(2x)e(x2)2,

d) xln|x2+3x10|,xln2|x|2ln|x|,

e) xx+10arcctgx,x21x2+arcsinx,

f) xxx,x(x2+1)x3+2x.

Wskazówka
Rozwiązanie

Ćwiczenie 10.2.

Wyznaczyć ekstrema funkcji

a) xx2,xx23,xx35,

b) xx3x2,x4x(x+2)3.

c) x3x23ex,x5x45ex,xex21,

d) xarccos1x21+x2,xarcsin2x1+x2.

Wskazówka
Rozwiązanie

Ćwiczenie 10.3.

Wyznaczyć największą i najmniejszą wartość funkcji

a) f(x)=ex2x210,

b) g(x)=arctg|x|3
w przedziale [1,3].

Wskazówka
Rozwiązanie

Ćwiczenie 10.4.

Znaleźć wymiary puszki do konserw w kształcie walca o objętości V=250πcm3, do sporządzenia której zużyje się najmniej blachy.

Wskazówka
Rozwiązanie

Ćwiczenie 10.5.

a) Udowodnić, że niezależnie od wyboru parametru m funkcja f(x)=3x44mx3+m2x2 ma minimum w punkcie 0.

b) Wykorzystując wzór Taylora dla n{1,2} wyznaczyć przybliżoną wartość 24,9 i 16,084, oraz oszacować błąd przybliżenia.

Wskazówka
Rozwiązanie

Ćwiczenie 10.6.

Niech

fn(x)={xnsin1x,gdyx00,gdyx=0,n0.

Pokazać, że f2n ma n-tą pochodną nieciągłą w 0, a f2n+1 należy do klasy Cn, ale nie ma (n+1)-ej pochodnej w 0, dla n0.

Wskazówki

Wskazówka

Rozwiązania i odpowiedzi

Rozwiązanie