|
|
(Nie pokazano 34 wersji utworzonych przez 3 użytkowników) |
Linia 1: |
Linia 1: |
| ==Problemy ze wzorami na osiłku== | | <quiz type="exclusive"> |
| <math>M</math> <math>M'</math> <math>M' </math> | | When working with character arrays, always reserve enough array elements to hold the string AND its null-terminating character (\0). |
| <math>{\large a^{\sum_{i=1}^{10}i}}</math>
| | <rightoption>True</rightoption> |
| | <wrongoption>False</wrongoption> |
| | </quiz> |
| | ==Testy== |
|
| |
|
| [[Konwersja Arka]]
| | <quiz type="exclusive"> |
| [[Konwersja Arka 2]]
| | When working with character arrays, always reserve enough array elements to hold the string AND its null-terminating character (\0). |
| [[Konwersja Arka 3]]
| | <rightoption>True</rightoption> |
| | <wrongoption>False</wrongoption> |
| | </quiz> |
|
| |
|
| | <quiz> |
| | When working with character arrays, always reserve enough array elements to hold the string AND its null-terminating character (\0). |
| | <rightoption>True</rightoption> |
| | <wrongoption>False</wrongoption> |
| | </quiz> |
|
| |
|
| <hr> | | <quiz type="exclusive"> |
| ==Ciągi liczbowe. Ćwiczenia== | | In C++, 14 % 4 = |
| | <option reply="Za mało">1</option> |
| | <option>2</option> |
| | <option reply="Za dużo">3</option> |
| | <wrongoption reply="O wiele za dużo">4</wrongoption> |
| | </quiz> |
| | |
| | <quiz> |
| | In C++, 14 % 4 = |
| | <option reply="Za mało">1</option> |
| | <option>2</option> |
| | <option reply="Za dużo">3</option> |
| | <wrongoption reply="O wiele za dużo">4</wrongoption> |
| | </quiz> |
|
| |
|
| Obliczyć następujące granice ciągów:<br>
| | <quiz> |
| | Variables that are declared, but not initialized, contain |
| | <wrongoption>blank spaces</wrongoption> |
| | <rightoption reply="Tak, pod warunkiem, że są globalne">zeros</rightoption> |
| | <rightoption reply="Jeśli nie są globalne">"garbage" values</rightoption> |
| | <wrongoption reply="Dostajesz pałę!">nothing - they are empty</wrongoption> |
| | </quiz> |
|
| |
|
| '''(1)'''
| | <quiz type="exclusive"> |
| | Variables that are declared, but not initialized, contain |
| | <wrongoption>blank spaces</wrongoption> |
| | <rightoption reply="Tak, pod warunkiem, że są globalne">zeros</rightoption> |
| | <rightoption reply="Jeśli nie są globalne">"garbage" values</rightoption> |
| | <wrongoption reply="Dostajesz pałę!">nothing - they are empty</wrongoption> |
| | </quiz> |
|
| |
|
| <math>\displaystyle
| |
|
| |
|
| \limn\frac{2n^2+1}{3n^2-1}</math><br> | | <div style="background-color: #bbbbbb; padding: 2em; border: 1px solid black"> |
| | Dlaczego suma <math>\sum_{i=1}^{10}i</math> jest źle wyświetlana w wykładniku potęgi? |
|
| |
|
| '''(2)'''
| | <math>z^{\sum_{i=1}^{10}i}</math> |
|
| |
|
| <math>\displaystyle
| |
|
| |
|
| \limn\frac{2n^2+n+2}{n\sqrt{n}}</math><br>
| | </div> |
|
| |
|
| '''(3)'''
| |
|
| |
|
| <math>\displaystyle | | <div id="content"> |
| | <div id="navcontainer"> |
| | <ul id="navlist"> |
| | <div><a href="index.xml" class="withChild">Start</a></div> |
|
| |
|
| \limn\frac{-n+1}{n^2+2}.</math>
| | <div id="active" class="withoutChild">Zadanie 1.</div> |
| | <div><a href="zadanie_2.xml" class="withoutChild">Zadanie 2.</a></div> |
| | <div><a href="zadanie_3.xml" class="withoutChild">Zadanie 3.</a></div> |
| | <div><a href="zadanie_4.xml" class="withoutChild">Zadanie 4.</a></div> |
| | <div><a href="zadanie_5.xml" class="withoutChild">Zadanie 5.</a></div> |
| | <div><a href="zadanie_6.xml" class="withoutChild">Zadanie 6.</a></div> |
|
| |
|
| '''(1)''' Podzielić licznik i mianownik przez <math>n^2</math>
| | </ul> |
| | </div> |
| | <div id="main"> |
| | <div id="nodeDecoration"> |
| | <p id="nodeTitle">Zadanie 1.</p> |
| | </div> |
| | <script type="text/javascript" src="common.js"></script> <script |
| | type="text/javascript" src="libot_drag.js"></script> |
| | |
| | <div class="iDevice emphasis1"><img alt="Ikona obiektu Pytanie" |
| | class="iDevice_icon" src="icon_question.gif" /> <span |
| | class="iDeviceTitle">Zadanie 1,</span><br /> |
| | <div class="iDevice_inner"> |
| | Liczba <math><msqrt><mrow><mn>3</mn> |
|
| |
|
| i skorzystać z twierdzeń o arytmetyce granic.<br>
| | <mo class="MathClass-bin">+</mo> <mn>2</mn><msqrt><mrow> |
| | <mn>2</mn></mrow></msqrt></mrow></msqrt> <mo class="MathClass-bin">−</mo><msqrt><mrow><mn>3</mn> |
| | <mo class="MathClass-bin">−</mo> <mn>2</mn><msqrt><mrow> |
| | <mn>2</mn></mrow></msqrt></mrow></msqrt></math> |
| | <table> |
| | <tbody> |
|
| |
|
| '''(2)''' Wykorzystać twierdzenie o dwóch ciągach.<br> | | <tr> |
| | <td><input type="checkbox" name="option9" id="ia0b9" |
| | value="vTrue" |
| | onclick="document.getElementById('sa0b9').style.display = this.checked ? 'block' : 'none';" /></td> |
| | <td>jest dodatnia</td> |
| | <td> |
| | <div id="sa0b9" style="color: rgb(0, 51, 204);display: none;">Poprawnie</div> |
| | </td> |
| | </tr> |
| | <tr> |
|
| |
|
| '''(3)''' Sposób I. Wykorzystać twierdzenie o trzech ciągach.<br> | | <td><input type="checkbox" name="option9" id="ia1b9" |
| | value="vTrue" |
| | onclick="document.getElementById('sa1b9').style.display = this.checked ? 'block' : 'none';" /></td> |
| | <td>jest wymierna</td> |
| | <td> |
| | <div id="sa1b9" style="color: rgb(0, 51, 204);display: none;">Poprawnie</div> |
| | </td> |
| | </tr> |
| | <tr> |
| | <td><input type="checkbox" name="option9" id="ia2b9" |
| | value="vFalse" |
| | onclick="document.getElementById('sa2b9').style.display = this.checked ? 'block' : 'none';" /></td> |
|
| |
|
| Sposób II.
| | <td>nale»y do trójkowego zbioru Cantora.</td> |
| | <td> |
| | <div id="sa2b9" style="color: rgb(0, 51, 204);display: none;">Źle</div> |
| | </td> |
| | </tr> |
| | </tbody> |
| | </table> |
|
| |
|
| Podzielić licznik i mianownik przez <math>n^2</math>
| | </div> |
| | | </div> |
| oraz skorzystać z twierdzeń o arytmetyce granic.
| | <div class="noprt" align="right"><a href="index.xml">« |
| | | previous</a> | <a href="zadanie_2.xml">next »</a></div> |
| '''(1)'''
| | </div> |
| | | </div> |
| Dzielimy licznik i mianownik przez <math>n^2</math> i dostajemy:
| |
| | |
| <center><math> | |
| | |
| \limn\frac{2n^2+1}{3n^2-1}
| |
| | |
| \ =\
| |
| | |
| \limn
| |
| | |
| \frac{\displaystyle 2+\overbrace{\frac{1}{n^2}}^{\ra 0}}{\displaystyle 3-\underbrace{\frac{1}{n^2}}_{\ra 0}}
| |
| | |
| \ =\
| |
| | |
| \frac{2}{3},
| |
| | |
| </math></center>
| |
| | |
| przy czym w ostatniej równości wykorzystujemy twierdzenia o
| |
| | |
| arytmetyce granic (dla sumy i iloczynu; patrz Twierdzenie [[##t.new.am1.w.04.080|Uzupelnic t.new.am1.w.04.080|]])
| |
| | |
| oraz fakt, że
| |
| | |
| <math>\displaystyle\limn \frac{1}{n^2}=0</math>
| |
| | |
| (patrz Przykład [[##p.new.am1.w.03.210|Uzupelnic p.new.am1.w.03.210|]] i Twierdzenie
| |
| | |
| [[##t.new.am1.w.04.080|Uzupelnic t.new.am1.w.04.080|]]).<br>
| |
| | |
| <br>
| |
| | |
| '''(2)'''
| |
| | |
| Zauważmy, że
| |
| | |
| <center><math>
| |
| | |
| \begin{array} {ccccc}
| |
| | |
| \displaystyle\frac{2n^2}{n\sqrt{n}} & \le & \displaystyle\frac{2n^2+n+2}{n\sqrt{n}}\\
| |
| | |
| \shortparallel & & \\
| |
| | |
| \displaystyle 2\sqrt{n} & & \\
| |
| | |
| \downarrow & & \\
| |
| | |
| +\infty & &
| |
| | |
| \end{array}
| |
| | |
| </math></center>
| |
| | |
| (przy czym ostatnią zbieżność <math>\displaystyle\limn \sqrt{n}=+\infty</math>
| |
| | |
| łatwo pokazać z definicji granicy niewłaściwej).
| |
| | |
| Zatem korzystając z twierdzenia o dwóch ciągach
| |
| | |
| (patrz Twierdzenie [[##t.new.am1.w.04.120|Uzupelnic t.new.am1.w.04.120|]](a))
| |
| | |
| wnioskujemy, że
| |
| | |
| <math>\displaystyle\limn \frac{2n^2+n+2}{n\sqrt{n}}=+\infty</math><br>
| |
| | |
| '''(3)'''
| |
| | |
| '''Sposób I.'''
| |
| | |
| Zauważmy, że
| |
| | |
| <center><math>
| |
| | |
| \begin{array} {ccccc}
| |
| | |
| \displaystyle -\frac{n}{n^2} & \le & \displaystyle\frac{-n+1}{n^2+2} & \le & 0\\
| |
| | |
| \shortparallel & & & & \downarrow\\
| |
| | |
| \displaystyle -\frac{1}{n} & & & & 0\\
| |
| | |
| \downarrow & & & & \\
| |
| | |
| 0 & & & & \\
| |
| | |
| \end{array}
| |
| | |
| </math></center>
| |
| | |
| Zatem korzystając z twierdzenia a trzech ciągach wnioskujemy,
| |
| | |
| że
| |
| | |
| <math>\displaystyle\limn \frac{-n+1}{n^2+2}=0.</math><br>
| |
| | |
| '''Sposób II.'''
| |
| | |
| Dzieląc licznik i mianownik przez <math>n^2</math>
| |
| | |
| oraz korzystając z twierdzeń o arytmetyce granic, mamy
| |
| | |
| <center><math>
| |
| | |
| \limn \frac{-n+1}{n^2+2}
| |
| | |
| \ =\
| |
| | |
| \limn\frac{\displaystyle \overbrace{-\frac{1}{n}}^{\ra 0}+\overbrace{\frac{1}{n^2}}^{\ra 0}}{\displaystyle 1+\underbrace{\frac{2}{n^2}}_{\ra 0}}
| |
| | |
| \ =\
| |
| | |
| 0.
| |
| | |
| </math></center>
| |
| | |
| Obliczyć następujące granice ciągów:<br>
| |
| | |
| '''(1)'''
| |
| | |
| <math>\displaystyle
| |
| | |
| \limn \frac{\binom{n+2}{n}}{n^2}</math><br>
| |
| | |
| '''(2)'''
| |
| | |
| <math>\displaystyle
| |
| | |
| \limn \frac{\binom{n+3}{n}}{n^3}.</math>
| |
| | |
| '''(1)''' Rozpisać symbol Newtona. Podzielić licznik i mianownik przez <math>n^2.</math><br>
| |
| | |
| '''(2)''' Rozwiązać analogicznie do przykładu (1).
| |
| | |
| '''(1)'''
| |
| | |
| Rozpiszmy symbol Newtona występujący w wyrazach ciągu
| |
| | |
| <center><math>
| |
| | |
| \binom{n+2}{n}
| |
| | |
| \ =\
| |
| | |
| \frac{(n+2)!}{n!\cdot 2!}
| |
| | |
| \ =\
| |
| | |
| \frac{(n+1)(n+2)}{2}
| |
| | |
| </math></center>
| |
| | |
| Zatem liczymy:
| |
| | |
| <center><math>\aligned \graph
| |
| | |
| \displaystyle
| |
| | |
| \limn \frac{\binom{n+2}{n}}{n^2}
| |
| | |
| & = &
| |
| | |
| \displaystyle
| |
| | |
| \limn \frac{(n+1)(n+2)}{2n^2}
| |
| | |
| \ =\
| |
| | |
| \limn\frac{n^2+3n+2}{2n^2}\\
| |
| | |
| & = &
| |
| | |
| \displaystyle
| |
| | |
| \limn\frac{1}{2}
| |
| | |
| +\underbrace{\limn\frac{3}{2}\cdot\frac{1}{n}}_{=0}
| |
| | |
| +\underbrace{\limn\frac{1}{n^2}}_{=0}
| |
| | |
| \ =\
| |
| | |
| \frac{1}{2}.
| |
| | |
| \endaligned</math></center>
| |
| | |
| '''(2)'''
| |
| | |
| Rozpiszmy symbol Newtona występujący w wyrazach ciągu
| |
| | |
| <center><math>
| |
| | |
| \binom{n+3}{n}
| |
| | |
| \ =\
| |
| | |
| \frac{(n+3)!}{n!\cdot 3!}
| |
| | |
| \ =\
| |
| | |
| \frac{(n+1)(n+2)(n+3)}{6}
| |
| | |
| </math></center>
| |
| | |
| Zatem liczymy:
| |
| | |
| <center><math>\aligned \graph
| |
| | |
| \displaystyle
| |
| | |
| \limn \frac{\binom{n+3}{n}}{n^3}
| |
| | |
| & = &
| |
| | |
| \displaystyle
| |
| | |
| \limn \frac{(n+1)(n+2)(n+3)}{6n^3}
| |
| | |
| \ =\
| |
| | |
| \limn\frac{n^3+6n^2+11n+6}{6n^3}\\
| |
| | |
| & = &
| |
| | |
| \displaystyle
| |
| | |
| \limn\frac{1}{6}
| |
| | |
| +\underbrace{\limn\frac{1}{n}}_{=0}
| |
| | |
| +\underbrace{\limn\frac{11}{6}\cdot\frac{1}{n^2}}_{=0}
| |
| | |
| +\underbrace{\limn\frac{1}{n^3}}_{=0}
| |
| | |
| \ =\
| |
| | |
| \frac{1}{6}.
| |
| | |
| \endaligned</math></center>
| |
| | |
| Obliczyć następujące granice ciągów:<br>
| |
| | |
| '''(1)'''
| |
| | |
| <math>\displaystyle
| |
| | |
| \limn\frac{5^{n+1}+1+6^{n+1}}{3\cdot 6^n}</math><br>
| |
| | |
| '''(2)'''
| |
| | |
| <math>\displaystyle
| |
| | |
| \limn\frac{2^{n+1}+3^n}{3^{2n}+2}</math><br>
| |
| | |
| '''(3)'''
| |
| | |
| <math>\displaystyle
| |
| | |
| \limn\frac{1+\frac{1}{4}+\frac{1}{16}+\ldots+\frac{1}{4^n}}{1+\frac{1}{3}+\frac{1}{9}+\ldots+\frac{1}{3^n}}.</math>
| |
| | |
| '''(1)''' Wykonać dzielenie <math>6^n.</math><br>
| |
| | |
| '''(2)''' Sposób I. Wykorzystać twierdzenie o trzech ciągach.<br>
| |
| | |
| Sposób II.
| |
| | |
| Podzielić licznik i mianownik przez <math>3^{2n}</math>
| |
| | |
| i skorzystać z twierdzeń o arytmetyce granic.<br>
| |
| | |
| '''(3)''' Wykorzystać wzór na sumę skończonego
| |
| | |
| ciągu geometrycznego (patrz Uwaga [[##u.1.0100|Uzupelnic u.1.0100|]]).
| |
| | |
| '''(1)'''
| |
| | |
| Wykonując dzielenie przez <math>6^n</math> dostajemy:
| |
| | |
| <center><math>
| |
| | |
| \limn\frac{5^{n+1}+1+6^{n+1}}{3\cdot 6^n}
| |
| | |
| \ =\
| |
| | |
| \limn\frac{5}{3}\bigg(\frac{5}{6}\bigg)^n
| |
| | |
| +\limn \frac{1}{3}\bigg(\frac{1}{6}\bigg)^n
| |
| | |
| +\limn 2
| |
| | |
| \ =\
| |
| | |
| 2,
| |
| | |
| </math></center>
| |
| | |
| gdzie wykorzystaliśmy znajomość ciągu geometrycznego
| |
| | |
| (patrz Przykład [[##p.new.am1.w.03.220|Uzupelnic p.new.am1.w.03.220|]]).<br>
| |
| | |
| <br>
| |
| | |
| '''(2)'''
| |
| | |
| '''Sposób I.'''
| |
| | |
| Zauważmy, że
| |
| | |
| <center><math>
| |
| | |
| \begin{array} {ccccc}
| |
| | |
| \displaystyle 0 & \le & \displaystyle\frac{2^{n+1}+3^n}{3^{2n}+2} & \le & \displaystyle\frac{2^{n+1}+3^n}{3^{2n}}\\
| |
| | |
| \downarrow & & & & \shortparallel\\
| |
| | |
| \displaystyle 0 & & & & \displaystyle 2\bigg(\frac{2}{9}\bigg)^n+\bigg(\frac{1}{3}\bigg)^n\\
| |
| | |
| & & & & \downarrow\\
| |
| | |
| & & & & 0\\
| |
| | |
| \end{array}
| |
| | |
| </math></center>
| |
| | |
| gdzie wykorzystaliśmy znajomość ciągu geometrycznego.
| |
| | |
| Zatem korzystając z twierdzenie a trzech ciągach wnioskujemy,
| |
| | |
| że
| |
| | |
| <math>\displaystyle\limn \frac{2^{n+1}+3^n}{3^{2n}+2}=0.</math><br>
| |
| | |
| <br>
| |
| | |
| '''Sposób II.'''
| |
| | |
| Dzieląc licznik i mianownik przez <math>3^{2n}</math>
| |
| | |
| oraz korzystając z twierdzeń o arytmetyce granic, mamy
| |
| | |
| <center><math>
| |
| | |
| \limn\frac{2^{n+1}+3^n}{3^{2n}+2}
| |
| | |
| \ =\
| |
| | |
| \limn \frac{\displaystyle 2\cdot\bigg(\frac{2}{9}\bigg)^n+\bigg(\frac{1}{3}\bigg)^n}{\displaystyle 1+2\cdot\bigg(\frac{1}{9}\bigg)^n}
| |
| | |
| \ =\
| |
| | |
| 0.
| |
| | |
| </math></center>
| |
| | |
| '''(3)'''
| |
| | |
| Korzystając ze wzoru na sumę skończonego
| |
| | |
| ciągu geometrycznego (patrz Uwaga [[##u.1.0100|Uzupelnic u.1.0100|]]), mamy
| |
| | |
| <center><math>
| |
| | |
| \limn\frac{\displaystyle 1+\frac{1}{4}+\frac{1}{16}+\ldots+\frac{1}{4^n}}{\displaystyle 1+\frac{1}{3}+\frac{1}{9}+\ldots+\frac{1}{3^n}}
| |
| | |
| \ =\
| |
| | |
| \limn\frac{\displaystyle\frac{\displaystyle 1-\frac{1}{4^{n+1}}}{\displaystyle 1-\frac{1}{4}}}{\displaystyle\frac{\displaystyle 1-\frac{1}{3^{n+1}}}{\displaystyle 1-\frac{1}{3}}}
| |
| | |
| \ =\
| |
| | |
| \frac{9}{8}\cdot
| |
| | |
| \limn\frac{\displaystyle 1-\overbrace{\bigg(\frac{1}{4}\bigg)^{n+1}}^{\ra 0}}{\displaystyle 1-\underbrace{\bigg(\frac{1}{3}\bigg)^{n+1}}_{\ra 0}}
| |
| | |
| \ =\
| |
| | |
| \frac{9}{8}\cdot 1
| |
| | |
| \ =\
| |
| | |
| \frac{9}{8}.
| |
| | |
| </math></center>
| |
| | |
| Niech
| |
| | |
| <math>\displaystyle\{x_n\}\subseteq\rr</math> będzie ciągiem liczbowym takim, że
| |
| | |
| <math>\displaystyle\limn x_n=g.</math>
| |
| | |
| Udowodnić, że
| |
| | |
| jeśli <math>g\ne 0</math> oraz
| |
| | |
| <math>x_n\ne 0</math> dla dowolnego <math>n\in\nn,</math> to ciąg
| |
| | |
| <math>\displaystyle\big\{\frac{1}{x_n}\big\}</math> jest ograniczony
| |
| | |
| oraz dodatkowo
| |
| | |
| <center><math>
| |
| | |
| \exists m>0:\ \bigg|\frac{1}{x_n}\bigg|\ge m.
| |
| | |
| </math></center>
| |
| | |
| Skorzystać z definicji granicy ciągu z
| |
| | |
| <math>\displaystyle\eps=\frac{|g|}{2}.</math>
| |
| | |
| Niech <math>\displaystyle\limn x_n=g\ne 0.</math>
| |
| | |
| Niech <math>\displaystyle\eps=\frac{|g|}{2}>0.</math>
| |
| | |
| Z definicji granicy mamy
| |
| | |
| <center><math>
| |
| | |
| \exists N\in\nn\ \forall n\ge N:\
| |
| | |
| |x_n-g|<\frac{|g|}{2},
| |
| | |
| </math></center>
| |
| | |
| w szczególności dla tak dobranego <math>N\in\nn,</math> mamy
| |
| | |
| <center><math>
| |
| | |
| \forall n\ge N:\ g-\frac{|g|}{2}<x_n<g+\frac{|g|}{2},
| |
| | |
| </math></center>
| |
| | |
| zatem
| |
| | |
| <center><math>
| |
| | |
| \forall n\ge N:\ \frac{|g|}{2}<|x_n|<\frac{3|g|}{2},
| |
| | |
| </math></center>
| |
| | |
| czyli
| |
| | |
| <center><math>
| |
| | |
| \forall n\ge N:\
| |
| | |
| \frac{2}{3|g|}<\frac{1}{|x_n|}<\frac{2}{|g|}.
| |
| | |
| </math></center>
| |
| | |
| Zdefiniujmy teraz
| |
| | |
| <center><math>
| |
| | |
| m
| |
| | |
| \ =\
| |
| | |
| \min\bigg\{\frac{2}{3|g|},\frac{1}{|x_1|},\ldots,\frac{1}{|x_n|}\bigg\},\qquad
| |
| | |
| M
| |
| | |
| \ =\
| |
| | |
| \max\bigg\{\frac{2}{|g|},\frac{1}{|x_1|},\ldots,\frac{1}{|x_n|}\bigg\}.
| |
| | |
| </math></center>
| |
| | |
| Oczywiście <math>0<m<M</math>
| |
| | |
| oraz
| |
| | |
| <center><math>
| |
| | |
| \forall n\in\nn:\ m\le \bigg|\frac{1}{x_n}\bigg|\le M,
| |
| | |
| </math></center>
| |
| | |
| co należało dowieść.
| |
| | |
| Niech
| |
| | |
| <math>\displaystyle\{a_n\},\{b_n\}\subseteq\rr</math>
| |
| | |
| będą ciągami liczbowymi zbieżnymi,
| |
| | |
| Udowodnić następujące stwierdzenia:<br>
| |
| | |
| '''(1)'''
| |
| | |
| <math>\displaystyle \limn (a_nb_n)
| |
| | |
| =\bigg(\limn a_n\bigg)\bigg(\limn b_n\bigg)</math>;<br>
| |
| | |
| '''(2)'''
| |
| | |
| <math>\displaystyle \limn \frac{a_n}{b_n}
| |
| | |
| =\frac{\limn a_n}{\limn b_n}</math>
| |
| | |
| (o ile
| |
| | |
| <math>b_n\ne 0</math> dla <math>n\in\nn</math> oraz <math>\displaystyle\limn b_n\ne 0</math>).
| |
| | |
| '''(1)''' Skorzystać z faktu, że ciąg zbieżny jest ograniczony.
| |
| | |
| Przy liczeniu granicy ciągu <math>\displaystyle\{a_nb_n\}</math> wykorzystać oszacowanie
| |
| | |
| <center><math>
| |
| | |
| \big|a_nb_n-ab\big|
| |
| | |
| \ \le\
| |
| | |
| \big|a_nb_n-a_nb\big|
| |
| | |
| +\big|a_nb-ab\big|.
| |
| | |
| </math></center>
| |
| | |
| '''(2)''' Najpierw udowodnić, że
| |
| | |
| <math>\displaystyle \limn \frac{1}{b_n}
| |
| | |
| =\frac{1}{\limn b_n}.</math>
| |
| | |
| W tym celu skorzystać z Zadania [[##z.new.am1.c.04.0040|Uzupelnic z.new.am1.c.04.0040|]].
| |
| | |
| Następnie wykorzystać punkt (1).
| |
| | |
| '''(1)'''
| |
| | |
| Niech <math>\displaystyle\limn a_n=a</math> i <math>\displaystyle\limn b_n=b.</math>
| |
| | |
| Należy pokazać, że
| |
| | |
| <center><math>
| |
| | |
| \forall \eps>0\ \exists N\in\nn\ \forall n\ge N:
| |
| | |
| \big|a_nb_n-ab\big|<\eps.
| |
| | |
| </math></center>
| |
| | |
| Ustalmy dowolne <math>\displaystyle\eps>0.</math>
| |
| | |
| Ciąg <math>\displaystyle\{a_n\}</math> jako zbieżny, jest ograniczony, to znaczy
| |
| | |
| <center><math>
| |
| | |
| \exists A>0\ \forall n\in\nn:\ |a_n|\le A.
| |
| | |
| </math></center>
| |
| | |
| Z definicji granicy mamy
| |
| | |
| <center><math>\aligned \graph
| |
| | |
| && \exists N_1\in\nn:\ |b_n-b|<\frac{\eps}{2A},\\
| |
| | |
| && \exists N_2\in\nn:\ |a_n-a|<\frac{\eps}{2|b|}
| |
| | |
| \endaligned</math></center>
| |
| | |
| (przy czym jeśli <math>b=0,</math> to ostatnie wyrażenie
| |
| | |
| <math>\displaystyle\frac{\eps}{2|b|}</math> zastąpmy przez <math>\displaystyle\eps</math>).
| |
| | |
| Niech <math>N=\max\{N_1,N_2\}.</math>
| |
| | |
| Wówczas dla dowolnego <math>n\ge N,</math> mamy
| |
| | |
| <center><math>\aligned \graph
| |
| | |
| \big|a_nb_n-ab\big|
| |
| | |
| & \le & | |
| | |
| \big|a_nb_n-a_nb\big|
| |
| | |
| +\big|a_nb-ab\big|
| |
| | |
| \ =\
| |
| | |
| |a_n||b_n-b|+|a_n-a||b|\\
| |
| | |
| & < &
| |
| | |
| A\cdot\frac{\eps}{2A}
| |
| | |
| +\frac{\eps}{2|b|}\cdot |b|
| |
| | |
| \ =\
| |
| | |
| \eps,
| |
| | |
| \endaligned</math></center>
| |
| | |
| zatem
| |
| | |
| <center><math>
| |
| | |
| \limn (a_nb_n)
| |
| | |
| \ =\
| |
| | |
| a\cdot b
| |
| | |
| \ =\
| |
| | |
| \bigg(\limn a_n\bigg)\cdot\bigg(\limn b_n\bigg).
| |
| | |
| </math></center>
| |
| | |
| '''(2)'''
| |
| | |
| Niech <math>\displaystyle\limn a_n=a</math> i <math>\displaystyle\limn b_n=b</math>
| |
| | |
| (gdzie <math>b_n\ne 0</math> dla <math>n\in\nn</math> oraz <math>b\ne 0</math>).
| |
| | |
| Pokażemy najpierw, że
| |
| | |
| <center><math>
| |
| | |
| \limn \frac{1}{b_n}
| |
| | |
| =\frac{1}{b}.
| |
| | |
| </math></center>
| |
| | |
| Ustalmy dowolne <math>\displaystyle\eps>0.</math>
| |
| | |
| Z Zadania [[##z.new.am1.c.04.0040|Uzupelnic z.new.am1.c.04.0040|]] wynika, że
| |
| | |
| <center><math>
| |
| | |
| \exists M>0\ \forall n\in\nn:\
| |
| | |
| \bigg|\frac{1}{b_n}\bigg|\le M.
| |
| | |
| </math></center>
| |
| | |
| Z definicji granicy,
| |
| | |
| zastosowanej do
| |
| | |
| <math>\displaystyle\wt{\eps}=\frac{|b|\eps}{M}</math>, mamy także
| |
| | |
| <center><math>
| |
| | |
| \exists N\in\nn\ \forall n\ge N:\
| |
| | |
| |b_n-b|<\frac{|b|\eps}{M}.
| |
| | |
| </math></center>
| |
| | |
| Wówczas dla <math>n\ge N,</math> mamy
| |
| | |
| <center><math>
| |
| | |
| \bigg|\frac{1}{b_n}-\frac{1}{b}\bigg|
| |
| | |
| \ =\
| |
| | |
| \bigg|\frac{b-b_n}{bb_n}\bigg|
| |
| | |
| \ =\
| |
| | |
| |b_n-b|\cdot\bigg|\frac{1}{b}\bigg|\cdot\bigg|\frac{1}{b_n}\bigg|
| |
| | |
| \ \le\
| |
| | |
| \frac{|b|\eps}{M}\cdot\frac{1}{|b|}\cdot M
| |
| | |
| \ =\
| |
| | |
| \eps,
| |
| | |
| </math></center>
| |
| | |
| pokazaliśmy więc, że
| |
| | |
| <math>\displaystyle\limn \frac{1}{b_n}=\frac{1}{b}.</math>
| |
| | |
| Możemy teraz skorzystać z udowodnionego już punktu (2),
| |
| | |
| a mianowicie
| |
| | |
| <center><math>
| |
| | |
| \limn \frac{a_n}{b_n}
| |
| | |
| \ =\
| |
| | |
| \limn \bigg(a_n\cdot\frac{1}{b_n}\bigg)
| |
| | |
| \ =\
| |
| | |
| a\cdot\frac{1}{b}
| |
| | |
| \ =\
| |
| | |
| \frac{a}{b}.
| |
| | |
| </math></center>
| |
| | |
| Niech
| |
| | |
| <math>\displaystyle\{a_n\},\{b_n\}\subseteq\rr</math>
| |
| | |
| będą ciągami liczbowymi zbieżnymi.
| |
| | |
| Udowodnić następujące stwierdzenia:<br>
| |
| | |
| '''(1)'''
| |
| | |
| <math>\displaystyle\limn a_n =a\quad
| |
| | |
| \Lra\quad
| |
| | |
| \limn |a_n|=|a|</math>;<br>
| |
| | |
| '''(2)'''
| |
| | |
| <math>\displaystyle\limn a_n =0\quad
| |
| | |
| \Llra\quad
| |
| | |
| \limn |a_n|=0</math>;
| |
| | |
| '''(1)'''
| |
| | |
| Udowodnić najpierw prostą nierówność:
| |
| | |
| <center><math>
| |
| | |
| \forall x,y\in\rr:\
| |
| | |
| \big| |x|-|y|\big|
| |
| | |
| \ \le\
| |
| | |
| |x-y|.
| |
| | |
| </math></center>
| |
| | |
| '''(2)''' Wykorzystać jedynie definicję granicy ciągu.
| |
| | |
| '''(1)'''
| |
| | |
| Udowodnimy najpierw, że
| |
| | |
| <center><math>
| |
| | |
| \forall x,y\in\rr:\
| |
| | |
| \big| |x|-|y|\big|
| |
| | |
| \ \le\
| |
| | |
| |x-y|.
| |
| | |
| </math></center>
| |
| | |
| Korzystając z nierówności trójkąta dla
| |
| | |
| wartości bezwzględnej (metryki euklidesowej w <math>\displaystyle\rr</math>), mamy
| |
| | |
| <center><math>
| |
| | |
| |x|
| |
| | |
| \ =\
| |
| | |
| |x-y+y|
| |
| | |
| \ \le\
| |
| | |
| |x-y|+|y|,
| |
| | |
| </math></center>
| |
| | |
| stąd
| |
| | |
| <center><math>
| |
| | |
| |x|-|y|
| |
| | |
| \ \le\
| |
| | |
| |x-y|.
| |
| | |
| </math></center>
| |
| | |
| Analogicznie dostajemy
| |
| | |
| <center><math>
| |
| | |
| |y|-|x|
| |
| | |
| \ \le\
| |
| | |
| |y-x|
| |
| | |
| \ =\
| |
| | |
| |x-y|.
| |
| | |
| </math></center>
| |
| | |
| Dwie ostatnie nierówności oznaczają, że
| |
| | |
| <center><math>
| |
| | |
| \big| |x|-|y|\big|
| |
| | |
| \ \le\
| |
| | |
| |x-y|,
| |
| | |
| </math></center>
| |
| | |
| co należało dowieść.
| |
| | |
| Załóżmy teraz, że
| |
| | |
| <math>\displaystyle\limn a_n=a.</math>
| |
| | |
| Należy pokazać, że
| |
| | |
| <math>\displaystyle\limn |a_n|=|a|.</math>
| |
| | |
| Ustalmy dowolne <math>\displaystyle\eps>0.</math>
| |
| | |
| Z definicji granicy mamy
| |
| | |
| <center><math>
| |
| | |
| \exists N\in\nn\ \forall n\ge N:\
| |
| | |
| |a_n-a|<\eps.
| |
| | |
| </math></center>
| |
| | |
| Wówczas, korzystając z udowodnionej nierówności,
| |
| | |
| dla <math>n\ge N,</math> mamy
| |
| | |
| <center><math>
| |
| | |
| \big||a_n|-|a|\big|
| |
| | |
| \ \le\
| |
| | |
| |a_n-a|
| |
| | |
| \ <\
| |
| | |
| \eps.
| |
| | |
| </math></center>
| |
| | |
| Zatem pokazaliśmy, że
| |
| | |
| <math>\displaystyle\limn |a_n|=|a|.</math><br>
| |
| | |
| <br>
| |
| | |
| Zauważmy w tym miejscu, że nie jest ogólnie prawdziwa implikacja
| |
| | |
| w drugą stronę. Rozważmy bowiem ciąg <math>a_n=(-1)^n</math>.
| |
| | |
| Wówczas <math>\limn |a_n|=\limn 1=1=|1|</math>, , ale ciąg <math>\{a_n\}</math> nie ma
| |
| | |
| granicy.<br>
| |
| | |
| <br>
| |
| | |
| '''(2)'''
| |
| | |
| "<math>\displaystyle\Longrightarrow</math>":<br>
| |
| | |
| Wynika wprost z punktu (4).<br>
| |
| | |
| "<math>\displaystyle\Longleftarrow</math>":<br>
| |
| | |
| Niech <math>\displaystyle\limn |a_n|=0.</math>
| |
| | |
| Należy pokazać, że <math>\displaystyle\limn a_n=0.</math>
| |
| | |
| Ustalmy dowolne <math>\displaystyle\eps>0.</math>
| |
| | |
| Z definicji granicy ciągu mamy
| |
| | |
| <center><math>
| |
| | |
| \exists N\in\nn\ \forall n\ge N:\
| |
| | |
| \big||a_n|-0\big|<\eps.
| |
| | |
| </math></center>
| |
| | |
| Zatem dla <math>n\ge N,</math> mamy
| |
| | |
| <center><math>
| |
| | |
| |a_n-0|
| |
| | |
| \ =\
| |
| | |
| |a_n|
| |
| | |
| \ =\
| |
| | |
| \big||a_n|\big|
| |
| | |
| \ =\
| |
| | |
| \big||a_n|-0\big|
| |
| | |
| \ <\
| |
| | |
| \eps,
| |
| | |
| </math></center>
| |
| | |
| co oznacza, że <math>\displaystyle\limn a_n=0.</math>
| |