GKIW Moduł 6a: Różnice pomiędzy wersjami
Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
m Zastępowanie tekstu – „.</math>” na „</math>.” |
m Zastępowanie tekstu – „,...,” na „,\ldots,” |
||
(Nie pokazano 1 pośredniej wersji utworzonej przez tego samego użytkownika) | |||
Linia 26: | Linia 26: | ||
|valign="top"| | |valign="top"| | ||
Wydawać by się mogło, że najprostszą forma modelowania krzywej jest wskazanie zbioru punktów na niej leżących a następnie połączenie ich krzywą interpolującą – najprościej wielomianową. | Wydawać by się mogło, że najprostszą forma modelowania krzywej jest wskazanie zbioru punktów na niej leżących a następnie połączenie ich krzywą interpolującą – najprościej wielomianową. | ||
Jeżeli dany jest ciąg parami różnych liczb <math>t_0, t_1, t_2, …t_n </math>– węzłów interpolacyjnych i odpowiadających im punktom <math>P_0, P_1, P_2,…P_n</math>. To poszukujemy krzywej wielomianowej P(t) takiej, że jest ona stopnia co najwyżej n oraz P(ti)=Pi dla każdego i. Tak sformułowane zadanie jest zadaniem interpolacyjnym Lagrange’a i ma dokładnie jedno rozwiązanie w postaci: | Jeżeli dany jest ciąg parami różnych liczb <math>t_0, t_1, t_2, …t_n</math>– węzłów interpolacyjnych i odpowiadających im punktom <math>P_0, P_1, P_2,…P_n</math>. To poszukujemy krzywej wielomianowej P(t) takiej, że jest ona stopnia co najwyżej n oraz P(ti)=Pi dla każdego i. Tak sformułowane zadanie jest zadaniem interpolacyjnym Lagrange’a i ma dokładnie jedno rozwiązanie w postaci: | ||
<math>P(t)=\Sigma_{i=0 }^n P_i( \prod_{j=0j\ne i}^n \frac{t-t_j}{t_i-t_j})</math> | <math>P(t)=\Sigma_{i=0 }^n P_i( \prod_{j=0j\ne i}^n \frac{t-t_j}{t_i-t_j})</math> | ||
Linia 179: | Linia 179: | ||
|width="500px" valign="top"|[[Grafika:GKIW_M6_Slajd_12.png|thumb|500px]] | |width="500px" valign="top"|[[Grafika:GKIW_M6_Slajd_12.png|thumb|500px]] | ||
|valign="top"|Pierwsza właściwość – zerowanie funkcji sklejanej poza przedziałem <math><t_i,t_{i+m+1}></math> jest bardzo istotna dla modelowania kształtu. Oznacza bowiem lokalność wpływu parametrów. Rozpatrzmy podprzedział <math><t_i,t_{i+m+1}></math> dla <math>t\in (t_i,t_{i+m+1})</math> niezerowe są tylko funkcje <math>N_i^m(t)</math> o indeksach <math>i=j-m,j-m+1,j-m+2, j</math> . W takim przedziale wartość <math>Q(t)</math> , a tym samym kształt krzywej, zależy tylko od punktów kontrolnych <math>P_j-m, P_j-m+1, P_j-m+2,…P_j</math> . Z drugiej strony punkt kontrolny Pi wpływa jedynie na fragment krzywej odpowiadający <math>t\in t_i, t_{i+m+1}</math> . | |valign="top"|Pierwsza właściwość – zerowanie funkcji sklejanej poza przedziałem <math><t_i,t_{i+m+1}></math> jest bardzo istotna dla modelowania kształtu. Oznacza bowiem lokalność wpływu parametrów. Rozpatrzmy podprzedział <math><t_i,t_{i+m+1}></math> dla <math>t\in (t_i,t_{i+m+1})</math> niezerowe są tylko funkcje <math>N_i^m(t)</math> o indeksach <math>i=j-m,j-m+1,j-m+2, j</math> . W takim przedziale wartość <math>Q(t)</math> , a tym samym kształt krzywej, zależy tylko od punktów kontrolnych <math>P_j-m, P_j-m+1, P_j-m+2,…P_j</math> . Z drugiej strony punkt kontrolny Pi wpływa jedynie na fragment krzywej odpowiadający <math>t\in t_i, t_{i+m+1}</math> . | ||
Indeks j zmienia się od 0 do m , natomiast i od 0 do n . Cały zakres takiej krzywej definiują więc węzły: <math>t_0<t_1<t_2<...<t_n_+_m_+_1</math> . Ale danych jest n+1 punktów kontrolnych (de Boora). Punkty <math>P_0, P_1, P_2,…P_m</math> definiują krzywą dla <math>t\in <t_m,t_{m+1}></math> , natomiast punkty Pn-m, Pn-m+1, Pn-m+2,…Pn definiują krzywą dla <math>t\in <t_n,t_{n+1}></math> . Węzły <math>t_0,t_1,t_2, | Indeks j zmienia się od 0 do m , natomiast i od 0 do n . Cały zakres takiej krzywej definiują więc węzły: <math>t_0<t_1<t_2<...<t_n_+_m_+_1</math> . Ale danych jest n+1 punktów kontrolnych (de Boora). Punkty <math>P_0, P_1, P_2,…P_m</math> definiują krzywą dla <math>t\in <t_m,t_{m+1}></math> , natomiast punkty Pn-m, Pn-m+1, Pn-m+2,…Pn definiują krzywą dla <math>t\in <t_n,t_{n+1}></math> . Węzły <math>t_0,t_1,t_2,\ldots,t_n</math> oraz <math>t_{n+1},t_{n+2},\ldots,t_{n+m+1}</math> nazywane są węzłami brzegowymi. Jeśli krzywa jest otwarta, to znaczy <math>Q(t_m)\ne Q(t_{n+1})</math> , i <math>t_0=t_1=t_2=...=t_m</math> oraz <math>t_{n+1}=t_{n+2}=...=t_{n+m+1}</math> to krzywa przechodzi przez końcowe punkty kontrolne, czyli <math>Q(t_m)=P_0 i Q(t_{n+1})=P_n</math> . Podobnie jak było w przypadku krzywych Béziera, styczne do krzywej w punktach końcowych mają kierunek końcowych odcinków łamanej kontrolnej. Dla krzywej zamkniętej przyjmuje się, że punkty de Boora i węzły kontrolne są cykliczne <math>(P_n=P_0)</math>. | ||
|} | |} |
Aktualna wersja na dzień 21:57, 15 wrz 2023
Wykład
![]() |
Literatura
![]() |