Test GR2: Różnice pomiędzy wersjami
m Zastępowanie tekstu – „\displaystyle ” na „” |
m Zastępowanie tekstu – „<math> ” na „<math>” |
||
| (Nie pokazano 1 pośredniej wersji utworzonej przez tego samego użytkownika) | |||
| Linia 14: | Linia 14: | ||
<center><math>\left| x \right|\ = \left\{ \begin{array}{rll} x & \text{ gdy }, x\geq 0 \\ -x & \text{ w przeciwnym przypadku}. | <center><math>\left| x \right|\ = \left\{ \begin{array}{rll} x & \text{ gdy }, x\geq 0 \\ -x & \text{ w przeciwnym przypadku}. | ||
\end{array} </math></center> | \end{array}</math></center> | ||
<center><math> w_3 &\rightarrow bv_3v_2w_3v_1v_3v_3v_2\ |\ | <center><math>w_3 &\rightarrow bv_3v_2w_3v_1v_3v_3v_2\ |\ | ||
aw_3v_1v_3v_3v_2\ |\ bv_3v_2v_1v_3v_3v_2 \\ | aw_3v_1v_3v_3v_2\ |\ bv_3v_2v_1v_3v_3v_2 \\ | ||
\begin{array}{lll} & & |\ av_1v_3v_3v_2\ |\ bv_3v_3v_2 | \begin{array}{lll} & & |\ av_1v_3v_3v_2\ |\ bv_3v_3v_2 | ||
| Linia 25: | Linia 25: | ||
oraz | oraz | ||
<center><math> w_3 &\rightarrow bv_3v_2w_3v_1v_3v_3v_2w_3\ |\ | <center><math>w_3 &\rightarrow bv_3v_2w_3v_1v_3v_3v_2w_3\ |\ | ||
aw_3v_1v_3v_3v_2w_3\ |\ bv_3v_2v_1v_3v_3v_2w_3 \\ | aw_3v_1v_3v_3v_2w_3\ |\ bv_3v_2v_1v_3v_3v_2w_3 \\ | ||
\begin{array}{lll} & & |\ av_1v_3v_3v_2w_3\ |\ bv_3v_3v_2w_3 | \begin{array}{lll} & & |\ av_1v_3v_3v_2w_3\ |\ bv_3v_3v_2w_3 | ||
| Linia 32: | Linia 32: | ||
Ostatecznie, gramatyka w postaci Greibach ma postać: | Ostatecznie, gramatyka w postaci Greibach ma postać: | ||
<center><math> | <center><math> v_1 &\rightarrow bv_3v_2w_3v_1v_3\ |\ aw_3v_1v_3\ |\ bv_3v_2v_1v_3\ |\ av_1v_3\ |\ bv_3 \\ | ||
v_2 &\rightarrow bv_3v_2w_3v_1\ |\ aw_3v_1\ |\ bv_3v_2v_1\ |\ av_1\ |\ b \\ | v_2 &\rightarrow bv_3v_2w_3v_1\ |\ aw_3v_1\ |\ bv_3v_2v_1\ |\ av_1\ |\ b \\ | ||
v_3 &\rightarrow bv_3v_2w_3\ |\ aw_3\ |\ bv_3v_2\ |\ a | v_3 &\rightarrow bv_3v_2w_3\ |\ aw_3\ |\ bv_3v_2\ |\ a | ||
| Linia 67: | Linia 67: | ||
\hline & & f'(\{q_0,q_2,q_3,q_4\},a)=\{q_0,q_2,q_3,q_4\} & \\ | \hline & & f'(\{q_0,q_2,q_3,q_4\},a)=\{q_0,q_2,q_3,q_4\} & \\ | ||
\hline & & f'(\{q_0,q_2,q_3,q_4\},b)=\{q_0,q_1,q_2,q_4\} & \\ | \hline & & f'(\{q_0,q_2,q_3,q_4\},b)=\{q_0,q_1,q_2,q_4\} & \\ | ||
\hline \end{array} | \hline \end{array} </math></center> | ||
| Linia 82: | Linia 82: | ||
\hline (s_R,\sharp)\mapsto (s_R,\sharp,0) & & \\ | \hline (s_R,\sharp)\mapsto (s_R,\sharp,0) & & \\ | ||
\hline (s_A,\sharp)\mapsto (s_A,\sharp,0) & & \\ | \hline (s_A,\sharp)\mapsto (s_A,\sharp,0) & & \\ | ||
\hline \end{array} | \hline \end{array} </math></center> | ||
| Linia 100: | Linia 100: | ||
\hline (s_4,\clubsuit)\mapsto(s_2,\clubsuit,1) & \\ | \hline (s_4,\clubsuit)\mapsto(s_2,\clubsuit,1) & \\ | ||
\hline (s_A,\sharp)\mapsto(s_A,\sharp,0) & (s_R,\sharp)\mapsto(s_R,\sharp,0)\\ | \hline (s_A,\sharp)\mapsto(s_A,\sharp,0) & (s_R,\sharp)\mapsto(s_R,\sharp,0)\\ | ||
\hline \end{array} | \hline \end{array} </math></center> | ||
| Linia 119: | Linia 119: | ||
\hline \tau _{\mathcal{A}}(aba) & s_1 & s_1 & s_2\\ | \hline \tau _{\mathcal{A}}(aba) & s_1 & s_1 & s_2\\ | ||
\hline ... & ... & ... & ...\\ | \hline ... & ... & ... & ...\\ | ||
\hline \end{array} | \hline \end{array} </math></center> | ||
| Linia 125: | Linia 125: | ||
\hline a & s_1 & s_2 & s_0 & s_2\\ | \hline a & s_1 & s_2 & s_0 & s_2\\ | ||
\hline b & s_3 & s_2 & s_2 & s_2\\ | \hline b & s_3 & s_2 & s_2 & s_2\\ | ||
\hline \end{array} | \hline \end{array} </math></center> | ||
| Linia 175: | Linia 175: | ||
| | | | ||
|| | || | ||
<math>s_{0} | <math>s_{0} </math> || | ||
<math>s_{1} | <math>s_{1} </math> || | ||
<math>s_{2} | <math>s_{2} </math> | ||
|- | |- | ||
| | | | ||
<math>\tau _{\mathcal{A}}(1) | <math>\tau _{\mathcal{A}}(1) </math> || | ||
<math>s_{0} | <math>s_{0} </math> || | ||
<math>s_{1} | <math>s_{1} </math> || | ||
<math>s_{2} | <math>s_{2} </math> | ||
|- | |- | ||
| | | | ||
<math>\tau _{\mathcal{A}}(a) | <math>\tau _{\mathcal{A}}(a) </math> || | ||
<math>s_{1} | <math>s_{1} </math> || | ||
<math>s_{2} | <math>s_{2} </math> || | ||
<math>s_{2} | <math>s_{2} </math> | ||
|- | |- | ||
| | | | ||
<math>\tau _{\mathcal{A}}(b) | <math>\tau _{\mathcal{A}}(b) </math> || | ||
<math>s_{0} | <math>s_{0} </math> || | ||
<math>s_{0} | <math>s_{0} </math> || | ||
<math>s_{0} | <math>s_{0} </math> | ||
|- | |- | ||
| | | | ||
<math>\tau _{\mathcal{A}}(a^{2}) | <math>\tau _{\mathcal{A}}(a^{2}) </math> || | ||
<math>s_{2} | <math>s_{2} </math> || | ||
<math>s_{2} | <math>s_{2} </math> || | ||
<math>s_{2} | <math>s_{2} </math> | ||
|- | |- | ||
| | | | ||
<math>\tau _{\mathcal{A}}(ab) | <math>\tau _{\mathcal{A}}(ab) </math> || | ||
<math>s_{0} | <math>s_{0} </math> || | ||
<math>s_{0} | <math>s_{0} </math> || | ||
<math>s_{2} | <math>s_{2} </math> | ||
|- | |- | ||
| | | | ||
<math>\tau _{\mathcal{A}}(ba) | <math>\tau _{\mathcal{A}}(ba) </math> || | ||
<math>s_{1} | <math>s_{1} </math> || | ||
<math>s_{1} | <math>s_{1} </math> || | ||
<math>s_{1} | <math>s_{1} </math> | ||
|- | |- | ||
| | | | ||
<math>\tau _{\mathcal{A}}(b^{2}) | <math>\tau _{\mathcal{A}}(b^{2}) </math> || | ||
<math>s_{0} | <math>s_{0} </math> || | ||
<math>s_{0} | <math>s_{0} </math> || | ||
<math>s_{0} | <math>s_{0} </math> | ||
|- | |- | ||
| | | | ||
<math>\tau _{\mathcal{A}}(aba) | <math>\tau _{\mathcal{A}}(aba) </math> || | ||
<math>s_{1} | <math>s_{1} </math> || | ||
<math>s_{1} | <math>s_{1} </math> || | ||
<math>s_{2} | <math>s_{2} </math> | ||
|- | |- | ||
| | | | ||
| Linia 239: | Linia 239: | ||
<math> | <math> | ||
\begin{array}{lll} | \begin{array}{lll} | ||
\text{b) } \lim_{x\rightarrow 2^+} (x-2)e^{\frac{1}{x-2}}&=&\lim_{x\rightarrow | \text{b) } \lim_{x\rightarrow 2^+} (x-2)e^{\frac{1}{x-2}}&=&\lim_{x\rightarrow | ||
Aktualna wersja na dzień 22:16, 11 wrz 2023
| 0 | 0 | 1 | 1 | |
| 0 | 1 | 0 | 1 | |
| 1 | 0 | 1 | 1 | |
| 1 | 1 | 1 | 1 |
oraz
Ostatecznie, gramatyka w postaci Greibach ma postać:
Algorytm Minimalizuj2 - algorytm minimalizacji automatu wykorzystujący stabilizujący się ciąg relacji
1 Wejście: - automat taki, że .
2 Wyjście: automat minimalny dla .
3 ;
4 ;
5 repeat
6 Parser nie mógł rozpoznać (nieznana funkcja „\slash”): {\displaystyle \slash \slash}
oblicz : ;
7 ;
8 empty
9 for each do
10 flagtrue;
11 for each
12 if not then
13 flagfalse;
14 end if
15 end for
16 if flag=true and then
17 ;
18 end if
19 end for
20 until
21 Parser nie mógł rozpoznać (nieznana funkcja „\slash”): {\displaystyle S' \leftarrow S \slash \overline{\rho}_i}
;
22 for each Parser nie mógł rozpoznać (nieznana funkcja „\slash”): {\displaystyle [s]_{\overline{\rho}_i} \in S \slash \overline{\rho}_i}
do
23 for each do
24 ;
25 end for
26 end for
27 ;
28 ;
29 return ;
|
|| || | |
|
|| || || | |
|
|| || || | |
|
|| || || | |
|
|| || || | |
|
|| || || | |
|
|| || || | |
|
|| || || | |
|
|| || || | |
|
... || ... || ... || ... | |
alalalalaa
alala
| Złożoność czasowa | Złożoność pamięciowa | |
|---|---|---|
| Maszyna dodająca | ||
| Maszyna rozpoznająca |
| 0 | 1 | ... | ... | |
|---|---|---|---|---|
| Cell1 | Cell2 |
| 0 | 1 | ||
|---|---|---|---|
| 0 | 1 | 1 | |
| 1 | 0 | 1 |
| 0 | 1 | |
| 1 | 0 |
| 0 | 1 | ||
|---|---|---|---|
| 0 | 0 | 0 | |
| 1 | 0 | 1 |
| 0 | 1 | ||
|---|---|---|---|
| 0 | 0 | 1 | |
| 1 | 1 | 1 |
| 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| 0 | 1 | 0 | 1 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 | 1 | 1 |
| 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
| 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |
| 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
| Numer funkcji |
||||||
|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | ||
| 1 | 0 | 0 | 0 | 1 | ||
| 2 | 0 | 0 | 1 | 0 | ||
| 3 | 0 | 0 | 1 | 1 | ||
| 4 | 0 | 1 | 0 | 0 | ||
| 5 | 0 | 1 | 0 | 1 | ||
| 6 | 0 | 1 | 1 | 0 | ||
| 7 | 0 | 1 | 1 | 1 | ||
| 8 | 1 | 0 | 0 | 0 | ||
| 9 | 1 | 0 | 0 | 1 | ||
| 10 | 1 | 0 | 1 | 0 | ||
| 11 | 1 | 0 | 1 | 1 | ||
| 12 | 1 | 1 | 0 | 0 | ||
| 13 | 1 | 1 | 0 | 1 | ||
| 14 | 1 | 1 | 1 | 0 | ||
| 15 | 1 | 1 | 1 | 1 |
| 0 | 0 | 0 | 1 | 0 | 1 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 | 1 |
| 0 | 1 | 0 | 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 | 0 | 1 | 0 |
| 1 | 0 | 0 | 0 | 1 | 1 | 1 |
| 1 | 0 | 1 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 1 | 0 | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 |
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 |
| 0 | 1 | 2 | ||
|---|---|---|---|---|
| 0 | 2 | 2 | 2 | |
| 1 | 0 | 2 | 2 | |
| 2 | 0 | 1 | 2 |
Nagroda Goedla
Zobacz Nagroda Goedla]]
Nagroda Turinga
Zobacz Nagroda Turinga
Nagroda Knutha
Zobacz Nagroda Knutha
Parser nie mógł rozpoznać (błąd składni): {\displaystyle g(C)=\left\{\begin{align} C\cup \{f(C')\}\\C\end{align} \right}
Parser nie mógł rozpoznać (błąd składni): {\displaystyle c\forall d\; c\in C \land d\in C \land c\sqsubseteq d\implies c\sqsubseteq' d, (C,\sqsubseteq) \preccurlyeq (C',\sqsubseteq') \iff C\subset C' \land \left\{\begin{align} \forall c \forall d\; &(c\in C\land d\in C) \implies (c\sqsubseteq d \iff c\sqsubseteq' d) \text{ oraz }\\ \forall c \forall d\; &(c\in C\land d\in C'\setminus C) \implies c\sqsubseteq' d \end{align} \right}
dla każdego Parser nie mógł rozpoznać (błąd składni): {\displaystyle a \in A \\h(n', a) = g(h(n, a), n, a)}
dla każdego i
dla każdego Parser nie mógł rozpoznać (błąd składni): {\displaystyle a \in A \\ e(g(n, a), n, a)}
dla każdego i