Teoria informacji/TI Ćwiczenia 7: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
m Zastępowanie tekstu - "\endaligned" na "\end{align}"
 
(Nie pokazano 1 pośredniej wersji utworzonej przez tego samego użytkownika)
Linia 18: Linia 18:


{{rozwiazanie|||  
{{rozwiazanie|||  
}}
<div class="mw-collapsible mw-made=collapsible mw-collapsed">  
<div class="mw-collapsible mw-made=collapsible mw-collapsed">  
<div class="mw-collapsible-content" style="display:none">
<div class="mw-collapsible-content" style="display:none">
Macierz <math>PQ</math>. Zgodnie z [[Teoria informacji/TI Wykład 7#macierz_kanału|definicją macierzy kanału]], dla wejściowego rozkładu prawdopodobieństwa <math>a</math> otrzymujemy pomiędzy kanałami rozkład postaci <math>a \cdot P</math> i na wyjściu rozkład <math>a \cdot P \cdot Q</math>.</div>
Macierz <math>PQ</math>. Zgodnie z [[Teoria informacji/TI Wykład 7#macierz_kanału|definicją macierzy kanału]], dla wejściowego rozkładu prawdopodobieństwa <math>a</math> otrzymujemy pomiędzy kanałami rozkład postaci <math>a \cdot P</math> i na wyjściu rozkład <math>a \cdot P \cdot Q</math>.</div>
</div>
</div>
}}
 




Linia 31: Linia 32:
</math> zostało połączonych szeregowo. Udowodnij, że tak powstały kanał również jest BSC, i oblicz jego przepustowość. Jaka zachowuje się ta przepustowość dla <math>n \to \infty</math>?}}
</math> zostało połączonych szeregowo. Udowodnij, że tak powstały kanał również jest BSC, i oblicz jego przepustowość. Jaka zachowuje się ta przepustowość dla <math>n \to \infty</math>?}}


{{wskazowka|||<div class="mw-collapsible mw-made=collapsible mw-collapsed">  
{{wskazowka|||
}}
<div class="mw-collapsible mw-made=collapsible mw-collapsed">  
<div class="mw-collapsible-content" style="display:none"> Do obliczenia przepustowości skorzystaj z wartości własnych <math>M</math> (o wartościach <math>1</math> i <math>2P-1</math>)
<div class="mw-collapsible-content" style="display:none"> Do obliczenia przepustowości skorzystaj z wartości własnych <math>M</math> (o wartościach <math>1</math> i <math>2P-1</math>)
</div>
</div>
</div>
</div>
}}
 


{{rozwiazanie|||  
{{rozwiazanie|||  
}}
<div class="mw-collapsible mw-made=collapsible mw-collapsed">  
<div class="mw-collapsible mw-made=collapsible mw-collapsed">  
<div class="mw-collapsible-content" style="display:none">
<div class="mw-collapsible-content" style="display:none">
Linia 49: Linia 53:
W pozostałych przypadkach <math>(2P-1)^n \to 0</math> czyli <math>C_{\Gamma^n} \to 1-H(\frac{1}{2})=0</math>.
W pozostałych przypadkach <math>(2P-1)^n \to 0</math> czyli <math>C_{\Gamma^n} \to 1-H(\frac{1}{2})=0</math>.
</div>
</div>
</div>}}
</div>




Linia 60: Linia 64:


{{rozwiazanie|||  
{{rozwiazanie|||  
}}
<div class="mw-collapsible mw-made=collapsible mw-collapsed">  
<div class="mw-collapsible mw-made=collapsible mw-collapsed">  
<div class="mw-collapsible-content" style="display:none">
<div class="mw-collapsible-content" style="display:none">
Linia 65: Linia 70:
Wyliczamy  
Wyliczamy  


<center><math>\aligned
<center><math>\begin{align}
H(B) & = H(\frac{1+p}{2})\\
H(B) & = H(\frac{1+p}{2})\\
H(B|A) & =0 \cdot p + 1 \cdot (1-p) = 1-p\\
H(B|A) & =0 \cdot p + 1 \cdot (1-p) = 1-p\\
Linia 74: Linia 79:
Aby znaleźć maksimum wyliczamy punkt, w którym pochodna się zeruje:
Aby znaleźć maksimum wyliczamy punkt, w którym pochodna się zeruje:


<center><math>\aligned
<center><math>\begin{align}
I'(A,B) & = (-\log \frac{1-p}{2}+\log\frac{1+p}{2}) \cdot \frac{1}{2}+1\\
I'(A,B) & = (-\log \frac{1-p}{2}+\log\frac{1+p}{2}) \cdot \frac{1}{2}+1\\
\log(\frac{1+p}{2}) & =\log(\frac{1-p}{2})+2\\
\log(\frac{1+p}{2}) & =\log(\frac{1-p}{2})+2\\
Linia 84: Linia 89:
Optymalny rozkład prawdopodobieństwa na wejściu to <math>Pr(x=0)=\frac{3}{5}</math>. Przepustowość <math>C_{\Gamma}=H(\frac{4}{5})-\frac{2}{5} \approx 0,3219</math>
Optymalny rozkład prawdopodobieństwa na wejściu to <math>Pr(x=0)=\frac{3}{5}</math>. Przepustowość <math>C_{\Gamma}=H(\frac{4}{5})-\frac{2}{5} \approx 0,3219</math>
</div>
</div>
</div>}}
</div>




Linia 91: Linia 96:


{{rozwiazanie|||  
{{rozwiazanie|||  
}}
<div class="mw-collapsible mw-made=collapsible mw-collapsed">  
<div class="mw-collapsible mw-made=collapsible mw-collapsed">  
<div class="mw-collapsible-content" style="display:none">
<div class="mw-collapsible-content" style="display:none">
Linia 97: Linia 103:
</div>
</div>
</div>
</div>
}}


== Zadania domowe ==
== Zadania domowe ==

Aktualna wersja na dzień 20:54, 27 wrz 2020

Mając daną macierz opisującą kanał, można obliczyć, dla jakiego wejściowego rozkładu prawdopodobieństwa informacja wzajemna między wejściem a wyjściem jest największa i tym samym obliczyć przepustowość tego kanału.

Poniższy interaktywny wykres pozwala prześledzić, jak ta przepustowość się zmienia w zależności od charakterystyki kanału. Przy pomocy dolnych suwaków można uzyskać charakterystykę dowolnego kanału binarnego (w prawym dolnym rogu). Wykres pokazuje, jak dla takiego kanału, w zależności od rozkładu prawodpodbieństwa na wejściu (parametr p określa prawdopodobieństwo wysłania 0), zmienia się:

  • rozkład prawdopodobieństwa na wyjściu (zielony wykres - prawdopodobieństwo uzyskania 0 na wyjściu)
  • informacja wzajemna między wejściem a wyjściem (czerwony wykres).

Maksimum czerwonej krzywej pokazuje, jaki jest optymalny rozkład na wejściu i jaka jest przepustowość takiego kanału.

<applet code="PSAplecik" archive="images/d/dd/PSApplet.jar" width="600" height="480"> <param name="TITLE" value="Informacja wzajemna dla kanału binarnego"> </applet>


Ćwiczenia

Ćwiczenie 1 [Łączenie kanałów]

Przypuśćmy, że łączymy szeregowo kanały opisywane macierzami P i Q, tak że wyjście z kanału P jest wejściem do kanału Q. Jaka macierz opisuje kanał w ten sposób utworzony?

Rozwiązanie


Ćwiczenie 2 [Łączenie BSC]

Załóżmy, że n identycznych binarnych kanałów symetrycznych Γ opisywanych macierzą M=(PP¯P¯P) zostało połączonych szeregowo. Udowodnij, że tak powstały kanał również jest BSC, i oblicz jego przepustowość. Jaka zachowuje się ta przepustowość dla n?

Wskazówka


Rozwiązanie


Ćwiczenie 3 [Kanał Z]

Kanał Z jest opisywany przez następującą macierz:

Z=(101212)
Oblicz przepustowośc tego kanału i znajdź rozkład prawdopodobieństwa na wejściu, który pozwala ją uzyskać.

Rozwiązanie


Ćwiczenie 4 [Informacja wzajemna dla BSC]

Narysuj trójwymiarowy wykres informacji pomiędzy wejściem a wyjściem w kanale BSC w zależności od rozkładu prawdopodobieństwa na wejściu i parametru P kanału.

Rozwiązanie

Zadania domowe

Zadanie 1 - Kanał pięciokątny

Rozważmy kanał Γ, dla którego 𝒜=={0,1,2,3,4} i prawdopodobieństwa przejść wyglądają następująco: p(b|a)={12 gdy b=a±1(mod5)0 wpp.

Oblicz CΓ. Kanał ten można wykorzystać do bezbłędnego przesyłania wiadomości z szybkością transmisji 1 bitu/znak, wysyłając tylko znaki 0 i 1. Opracuj metodę wysyłania danych, tak aby uzyskać większą szybkość transmisji, zachowując zerowe prawdopodobieństwo błędu.}}